Joaquim Roca
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joaquim Roca.
Gut | 2006
Chaysavanh Manichanh; Lionel Rigottier-Gois; Elian Bonnaud; Karine Gloux; Eric Pelletier; Lionel Frangeul; Renaud Nalin; Cyrille Jarrin; Patrick Chardon; Phillipe Marteau; Joaquim Roca; Joël Doré
Background and aim: A role for the intestinal microbial community (microbiota) in the onset and chronicity of Crohn’s disease (CD) is strongly suspected. However, investigation of such a complex ecosystem is difficult, even with culture independent molecular approaches. Methods: We used, for the first time, a comprehensive metagenomic approach to investigate the full range of intestinal microbial diversity. We used a fosmid vector to construct two libraries of genomic DNA isolated directly from faecal samples of six healthy donors and six patients with CD. Bacterial diversity was analysed by screening the two DNA libraries, each composed of 25 000 clones, for the 16S rRNA gene by DNA hybridisation. Results: Among 1190 selected clones, we identified 125 non-redundant ribotypes mainly represented by the phyla Bacteroidetes and Firmicutes. Among the Firmicutes, 43 distinct ribotypes were identified in the healthy microbiota, compared with only 13 in CD (p<0.025). Fluorescent in situ hybridisation directly targeting 16S rRNA in faecal samples analysed individually (n = 12) confirmed the significant reduction in the proportion of bacteria belonging to this phylum in CD patients (p<0.02). Conclusion: The metagenomic approach allowed us to detect a reduced complexity of the bacterial phylum Firmicutes as a signature of the faecal microbiota in patients with CD. It also indicated the presence of new bacterial species.
Cell | 1992
Joaquim Roca; James C. Wang
The binding of linear and circular forms of DNA to yeast DNA topoisomerase II or its complex with AMPPNP, the nonhydrolyzable beta,gamma-imido analog of ATP, was carried out to probe the ATP analog-induced conformational change of the enzyme. Binding of the ATP analog is shown to convert the enzyme to a circular clamp with an annulet, through which only a linear DNA can pass; subsequent circularization of the bound linear DNA forms a salt-stable catenane between the protein circular clamp and the DNA ring. Analysis of catenane formation between a small DNA ring originally bound to the topoisomerase and a large DNA ring subsequently added, under conditions such that the two do not exchange, supports a model in which a second DNA double-helix can enter the open jaws of a DNA-bound protein clamp, and the closure of the jaws upon ATP-binding traps the second duplex and transports it through an enzyme-operated gate in the first DNA duplex.
Cell | 1994
Joaquim Roca; James C. Wang
DNA substrates in which a supercoiled DNA is singly linked to a nicked or relaxed DNA ring were used to analyze the transport of one DNA ring through another by yeast DNA topoisomerase II. The enzyme binds preferentially to the supercoiled DNA and promotes decatenation efficiently upon binding of a nonhydrolyzable ATP analog. Analysis of the reaction products shows that the nicked or relaxed DNA ring released is not associated with the enzyme-supercoiled DNA complex. These results favor a two-gate model in which the DNA ring being transported can exit from the interior of the enzyme through a gate on the opposite side of the entrance gate, which is irreversibly closed upon binding of the nonhydrolyzable ATP analog.
Trends in Biochemical Sciences | 1995
Joaquim Roca
Recent structural and mechanistic studies, as well as the discovery of new enzymes in the DNA topoisomerase family, allow these enzymes to be classified into three groups. Each group reflects the evolution of three different mechanistic strategies to manipulate DNA topology.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Javier Arsuaga; Mariel Vazquez; Sonia Trigueros; De Witt Sumners; Joaquim Roca
When linear double-stranded DNA is packed inside bacteriophage capsids, it becomes highly compacted. However, the phage is believed to be fully effective only if the DNA is not entangled. Nevertheless, when DNA is extracted from a tailless mutant of the P4 phage, DNA is found to be cyclic and knotted (probability of 0.95). The knot spectrum is very complex, and most of the knots have a large number of crossings. We quantified the frequency and crossing numbers of these knots and concluded that, for the P4 tailless mutant, at least half the knotted molecules are formed while the DNA is still inside the viral capsid rather than during extraction. To analyze the origin of the knots formed inside the capsid, we compared our experimental results to Monte Carlo simulations of random knotting of equilateral polygons in confined volumes. These simulations showed that confinement of closed chains to tightly restricted volumes results in high knotting probabilities and the formation of knots with large crossing numbers. We conclude that the formation of the knots inside the viral capsid is driven mainly by the effects of confinement.
BMC Microbiology | 2012
Silvia T. Cardona; Anat Eck; Montserrat Cassellas; Milagros Gallart; Carmen Alastrue; Joël Doré; Fernando Azpiroz; Joaquim Roca; Francisco Guarner; Chaysavanh Manichanh
BackgroundThe structure and function of human gut microbiota is currently inferred from metagenomic and metatranscriptomic analyses. Recovery of intact DNA and RNA is therefore a critical step in these studies. Here, we evaluated how different storage conditions of fecal samples affect the quality of extracted nucleic acids and the stability of their microbial communities.ResultsWe assessed the quality of genomic DNA and total RNA by microcapillary electrophoresis and analyzed the bacterial community structure by pyrosequencing the 16S rRNA gene. DNA and RNA started to fragment when samples were kept at room temperature for more than 24 h. The use of RNAse inhibitors diminished RNA degradation but this protection was not consistent among individuals. DNA and RNA degradation also occurred when frozen samples were defrosted for a short period (1 h) before nucleic acid extraction. The same conditions that affected DNA and RNA integrity also altered the relative abundance of most taxa in the bacterial community analysis. In this case, intra-individual variability of microbial diversity was larger than inter-individual one.ConclusionsThough this preliminary work explored a very limited number of parameters, the results suggest that storage conditions of fecal samples affect the integrity of DNA and RNA and the composition of their microbial community. For optimal preservation, stool samples should be kept at room temperature and brought at the laboratory within 24 h after collection or be stored immediately at −20°C in a home freezer and transported afterwards in a freezer pack to ensure that they do not defrost at any time. Mixing the samples with RNAse inhibitors outside the laboratory is not recommended since proper homogenization of the stool is difficult to monitor.
The EMBO Journal | 2006
Javier Salceda; Xavier Fernández; Joaquim Roca
Eukaryotic topoisomerases I and II efficiently remove helical tension in naked DNA molecules. However, this activity has not been examined in nucleosomal DNA, their natural substrate. Here, we obtained yeast minichromosomes holding DNA under (+) helical tension, and incubated them with topoisomerases. We show that DNA supercoiling density can rise above +0.04 without displacement of the histones and that the typical nucleosome topology is restored upon DNA relaxation. However, in contrast to what is observed in naked DNA, topoisomerase II relaxes nucleosomal DNA much faster than topoisomerase I. The same effect occurs in cell extracts containing physiological dosages of topoisomeraseI and II. Apparently, the DNA strand‐rotation mechanism of topoisomerase I does not efficiently relax chromatin, which imposes barriers for DNA twist diffusion. Conversely, the DNA cross‐inversion mechanism of topoisomerase II is facilitated in chromatin, which favor the juxtaposition of DNA segments. We conclude that topoisomerase II is the main modulator of DNA topology in chromatin fibers. The nonessential topoisomerase I then assists DNA relaxation where chromatin structure impairs DNA juxtaposition but allows twist diffusion.
Nucleic Acids Research | 2009
Joaquim Roca
The mechanism by which type-2A topoisomerases transport one DNA duplex through a transient double-strand break produced in another exhibits fascinating traits. One of them is the fine coupling between inter-domainal movements and ATP usage; another is their preference to transport DNA in particular directions. These capabilities have been inferred from in vitro studies but we ignore their significance inside the cell, where DNA configurations markedly differ from those of DNA in free solution. The eukaryotic type-2A enzyme, topoisomerase II, is the second most abundant chromatin protein after histones and its biological roles include the decatenation of newly replicated DNA and the relaxation of polymerase-driven supercoils. Yet, topoisomerase II is also implicated in other cellular processes such as chromatin folding and gene expression, in which the topological transformations catalysed by the enzyme are uncertain. Here, some capabilities of topoisomerase II that might be relevant to infer the enzyme performance in the context of chromatin architecture are discussed. Some aspects addressed are the importance of the DNA rejoining step to ensure genome stability, the regulation of the enzyme activity and of its putative structural role, and the selectively of DNA transport in the chromatin milieu.
Nucleic Acids Research | 2001
Sonia Trigueros; Javier Arsuaga; Maria E. Vazquez; De Witt L. Sumners; Joaquim Roca
We describe a two-dimensional agarose gel electrophoresis procedure that improves the resolution of knotted DNA molecules. The first gel dimension is run at low voltage, and DNA knots migrate according to their compactness. The second gel dimension is run at high voltage, and DNA knots migrate according to other physical parameters such as shape and flexibility. In comparison with one-dimensional gel electrophoresis, this procedure segregates the knotted DNA molecules from other unknotted forms of DNA, and partially resolves populations of knots that have the same number of crossings. The two-dimensional display may allow quantitative and qualitative characterization of different types of DNA knots simply by gel velocity.
Genes to Cells | 1996
Joaquim Roca; James C. Wang
Background: In yeast a single type II DNA topoisomerase is involved in both the removal of DNA supercoils and the unlinking of intertwined pairs of newly replicated chromosomes or plasmids; in bacteria, two type II enzymes, DNA gyrase and DNA topoisomerase IV, function separately in the passage of DNA segments in cis and in trans. To deduce the molecular characteristics of these enzyme‐mediated reactions, the efficiencies of supercoil removal and decatenation by the yeast enzyme upon the addition of a nonhydrolysable ATP analogue were determined.