Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joaquin A. Anguera is active.

Publication


Featured researches published by Joaquin A. Anguera.


Nature | 2013

Video game training enhances cognitive control in older adults

Joaquin A. Anguera; Jacqueline Boccanfuso; J. L. Rintoul; O. Al-Hashimi; F. Faraji; Jacqueline R. Janowich; E. Kong; Y. Larraburo; Camarin E. Rolle; E. Johnston; Adam Gazzaley

Cognitive control is defined by a set of neural processes that allow us to interact with our complex environment in a goal-directed manner. Humans regularly challenge these control processes when attempting to simultaneously accomplish multiple goals (multitasking), generating interference as the result of fundamental information processing limitations. It is clear that multitasking behaviour has become ubiquitous in today’s technologically dense world, and substantial evidence has accrued regarding multitasking difficulties and cognitive control deficits in our ageing population. Here we show that multitasking performance, as assessed with a custom-designed three-dimensional video game (NeuroRacer), exhibits a linear age-related decline from 20 to 79 years of age. By playing an adaptive version of NeuroRacer in multitasking training mode, older adults (60 to 85 years old) reduced multitasking costs compared to both an active control group and a no-contact control group, attaining levels beyond those achieved by untrained 20-year-old participants, with gains persisting for 6 months. Furthermore, age-related deficits in neural signatures of cognitive control, as measured with electroencephalography, were remediated by multitasking training (enhanced midline frontal theta power and frontal–posterior theta coherence). Critically, this training resulted in performance benefits that extended to untrained cognitive control abilities (enhanced sustained attention and working memory), with an increase in midline frontal theta power predicting the training-induced boost in sustained attention and preservation of multitasking improvement 6 months later. These findings highlight the robust plasticity of the prefrontal cognitive control system in the ageing brain, and provide the first evidence, to our knowledge, of how a custom-designed video game can be used to assess cognitive abilities across the lifespan, evaluate underlying neural mechanisms, and serve as a powerful tool for cognitive enhancement.


Journal of Cognitive Neuroscience | 2010

Contributions of spatial working memory to visuomotor learning

Joaquin A. Anguera; Patricia A. Reuter-Lorenz; Daniel T. Willingham; Rachael D. Seidler

Previous studies of motor learning have described the importance of cognitive processes during the early stages of learning; however, the precise nature of these processes and their neural correlates remains unclear. The present study investigated whether spatial working memory (SWM) contributes to visuomotor adaptation depending on the stage of learning. We tested the hypothesis that SWM would contribute early in the adaptation process by measuring (i) the correlation between SWM tasks and the rate of adaptation, and (ii) the overlap between the neural substrates of a SWM mental rotation task and visuomotor adaptation. Participants completed a battery of neuropsychological tests, a visuomotor adaptation task, and an SWM task involving mental rotation, with the latter two tasks performed in a 3.0-T MRI scanner. Performance on a neuropsychological test of SWM (two-dimensional mental rotation) correlated with the rate of early, but not late, visuomotor adaptation. During the early, but not late, adaptation period, participants showed overlapping brain activation with the SWM mental rotation task, in right dorsolateral prefrontal cortex and the bilateral inferior parietal lobules. These findings suggest that the early, but not late, phase of visuomotor adaptation engages SWM processes.


Journal of Cognitive Neuroscience | 2011

Failure to engage spatial working memory contributes to age-related declines in visuomotor learning

Joaquin A. Anguera; Patricia A. Reuter-Lorenz; Daniel T. Willingham; Rachael D. Seidler

It is well documented that both cognitive and motor learning abilities decline with normative aging. Given that cognitive processes such as working memory are engaged during the early stages of motor learning [Anguera, J., Reuter-Lorenz, P., Willingham, D., & Seidler, R. Contributions of spatial working memory to visuomotor learning. Journal of Cognitive Neuroscience, 22(9), 1917–1930, 2010], age-related declines in motor learning may be due in part to reductions in cognitive ability. The present study examined whether age-related declines in spatial working memory (SWM) contribute to deficits in visuomotor adaptation. Young and older adult participants performed a visuomotor adaptation task that involved adapting manual aiming movements to a 30° rotation of the visual feedback display as well as an SWM task in an fMRI scanner. Young adults showed a steeper learning curve than older adults during the early adaptation period. The rate of early adaptation was correlated with SWM performance for the young, but not older, adults. Both groups showed similar brain activation patterns for the SWM task, including engagement of the right dorsolateral prefrontal cortex and bilateral inferior parietal lobules. However, when the SWM activation was used as a limiting mask, younger adults showed neural activation that overlapped with the early adaptation period, whereas older adults did not. A partial correlation controlling for age revealed that the rate of early adaptation correlated with the amount of activation at the right dorsolateral prefrontal cortex. These findings suggest that a failure to effectively engage SWM processes during learning contributes to age-related deficits in visuomotor adaptation.


Brain Research | 2007

Neural correlates associated with intermanual transfer of sensorimotor adaptation

Joaquin A. Anguera; Colleen A. Russell; Douglas C. Noll; Rachael D. Seidler

Investigations of intermanual transfer of learning have demonstrated that individuals can transfer acquired motor skills from one hand to the other. The purpose of the current study was to use fMRI to investigate the potential overlap of neural regions engaged during learning and at transfer of learning from the dominant arm to the non-dominant arm during sensorimotor adaptation. Participants performed a visuomotor adaptation joystick task where they adapted manual aiming movements to a 30 degrees rotation of the visual feedback display. They performed eleven blocks (24 trials/block) of right-hand adaptation before performing the task with their left hand (transfer). Participants showed a selective transfer of learning effect: prior right-hand practice led to reduced endpoint errors but not trajectory errors for the left hand. This is consistent with work showing that the right arm is specialized for trajectory control while the left is specialized for endpoint control [Sainburg, R.L., 2005. Handedness, Differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33, 206-213.]. Early adaptation processes were associated with activation in frontal and parietal regions, including bilateral dorsal premotor cortex. At transfer, activation was seen in the temporal cortex as well as the right medial frontal gyrus and the middle occipital gyrus. These regions have been observed in other studies during the late phases of sensorimotor adaptation. Integrating these data with the existing literature, we suggest that the left dorsal premotor cortex contributes to trajectory control, while the left visual and temporal cortices contribute to endpoint control.


Journal of Neurophysiology | 2009

Changes in Performance Monitoring During Sensorimotor Adaptation

Joaquin A. Anguera; Rachael D. Seidler; William J. Gehring

Error detection and correction are essential components of motor skill learning. These processes have been well characterized in cognitive psychology using electroencephalography (EEG) to record an event-related potential (ERP) called error-related negativity (ERN). However, it is unclear whether this ERP component is sensitive to the magnitude of the error made in a sensorimotor adaptation task. In the present study, we tested the function of error-related activity in a visuomotor adaptation task. To examine whether error size is reflected in the ERP, two groups of participants adapted manual aiming movements to either a small (30 degrees) or large (45 degrees) rotation of the visual feedback display. Each participants trials were sorted into large and small error trials using a median split to examine potential error magnitude waveform differences. We also examined these trial types at the early and late stages of adaptation. There were no group differences for the behavioral or neural measures; however, waveforms from large error trials were significantly different from small error trials. The waveforms also changed as a function of practice as early adaptation waveforms were larger than late adaptation waveforms. The observed ERP component reflected differences in error magnitude with the amount of activity corresponding to the size of the error. Movement monitoring potentials likely affected the frequency and time course of the waveform so that it did not resemble the typical ERN; however, error-related activity was still distinguishable. The present findings are discussed in terms of current theories of the ERN as well as skill acquisition.


Journal of Motor Behavior | 2012

Neurocognitive Contributions to Motor Skill Learning: The Role of Working Memory

Rachael D. Seidler; Jin Bo; Joaquin A. Anguera

ABSTRACT Researchers have begun to delineate the precise nature and neural correlates of the cognitive processes that contribute to motor skill learning. The authors review recent work from their laboratory designed to further understand the neurocognitive mechanisms of skill acquisition. The authors have demonstrated an important role for spatial working memory in 2 different types of motor skill learning, sensorimotor adaptation and motor sequence learning. They have shown that individual differences in spatial working memory capacity predict the rate of motor learning for sensorimotor adaptation and motor sequence learning, and have also reported neural overlap between a spatial working memory task and the early, but not late, stages of adaptation, particularly in the right dorsolateral prefrontal cortex and bilateral inferior parietal lobules. The authors propose that spatial working memory is relied on for processing motor error information to update motor control for subsequent actions. Further, they suggest that working memory is relied on during learning new action sequences for chunking individual action elements together.


Journal of Neurophysiology | 2011

A spatial explicit strategy reduces error but interferes with sensorimotor adaptation

Bryan L. Benson; Joaquin A. Anguera; Rachael D. Seidler

Although sensorimotor adaptation is typically thought of as an implicit form of learning, it has been shown that participants who gain explicit awareness of the nature of the perturbation during adaptation exhibit more learning than those who do not. With rare exceptions, however, explicit awareness is typically polled at the end of the study. Here, we provided participants with either an explicit spatial strategy or no instructions before learning. Early in learning, explicit instructions greatly reduced movement errors but also resulted in increased trial-to-trial variability and longer reaction times. Late in adaptation, performance was indistinguishable between the explicit and implicit groups, but the mechanisms underlying performance improvements remained fundamentally different, as revealed by catch trials. The progression of implicit recalibration in the explicit group was modulated by the use of an explicit strategy: these participants showed a lower level of recalibration as well as decreased aftereffects. This phenomenon may be due to the reduced magnitude of errors made to the target during adaptation or inhibition of implicit learning mechanisms by explicit processing.


Behavioural Brain Research | 2012

The effects of working memory resource depletion and training on sensorimotor adaptation

Joaquin A. Anguera; Jessica A. Bernard; Susanne M. Jaeggi; Martin Buschkuehl; Bryan L. Benson; Sarah Jennett; Jennifer Humfleet; Patricia A. Reuter-Lorenz; John Jonides; Rachael D. Seidler

We have recently demonstrated that visuospatial working memory performance predicts the rate of motor skill learning, particularly during the early phase of visuomotor adaptation. Here, we follow up these correlational findings with direct manipulations of working memory resources to determine the impact on visuomotor adaptation, a form of motor learning. We conducted two separate experiments. In the first one, we used a resource depletion strategy to investigate whether the rate of early visuomotor adaptation would be negatively affected by fatigue of spatial working memory resources. In the second study, we employed a dual n-back task training paradigm that has been shown to result in transfer effects [1] over five weeks to determine whether training-related improvements would boost the rate of early visuomotor adaptation. The depletion of spatial working memory resources negatively affected the rate of early visuomotor adaptation. However, enhancing working memory capacity via training did not lead to improved rates of visuomotor adaptation, suggesting that working memory capacity may not be the factor limiting maximal rate of visuomotor adaptation in young adults. These findings are discussed from a resource limitation/capacity framework with respect to current views of motor learning.


BMJ Innovations | 2016

Conducting a fully mobile and randomised clinical trial for depression: access, engagement and expense.

Joaquin A. Anguera; Joshua T Jordan; Diego Castaneda; Adam Gazzaley; Patricia A. Areán

Importance Advances in mobile technology have resulted in federal and industry-level initiatives to facilitate large-scale clinical research using smart devices. Although the benefits of technology to expand data collection are obvious, assumptions about the reach of mobile research methods (access), participant willingness to engage in mobile research protocols (engagement), and the cost of this research (cost) remain untested. Objective To assess the feasibility of a fully mobile randomised controlled trial using assessments and treatments delivered entirely through mobile devices to depressed individuals. Design Using a web-based research portal, adult participants with depression who also owned a smart device were screened, consented and randomised to 1 of 3 mental health apps for treatment. Assessments of self-reported mood and cognitive function were conducted at baseline, 4, 8 and 12 weeks. Physical and social activity was monitored daily using passively collected phone use data. All treatment and assessment tools were housed on each participants smart phone or tablet. Interventions A cognitive training application, an application based on problem-solving therapy, and a mobile-sensing application promoting daily activities. Results Access: We screened 2923 people and enrolled 1098 participants in 5 months. The sample characteristics were comparable to the 2013 US census data. Recruitment via Craigslist.org yielded the largest sample. Engagement: Study engagement was high during the first 2 weeks of treatment, falling to 44% adherence by the 4th week. Cost: The total amount spent on for this project, including staff costs and β testing, was


Journal of Medical Internet Research | 2016

The Use and Effectiveness of Mobile Apps for Depression: Results From a Fully Remote Clinical Trial

Patricia A. Areán; Kevin A. Hallgren; Joshua T Jordan; Adam Gazzaley; David C. Atkins; Patrick J Heagerty; Joaquin A. Anguera

314 264 over 2 years. Conclusions and relevance These findings suggest that mobile randomised control trials can recruit large numbers of participants in a short period of time and with minimal cost, but study engagement remains challenging. Trial registration number NCT00540865.

Collaboration


Dive into the Joaquin A. Anguera's collaboration.

Top Co-Authors

Avatar

Adam Gazzaley

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brenna N. Renn

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elysa J. Marco

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge