Joaquín Jiménez-Martínez
Los Alamos National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joaquín Jiménez-Martínez.
Environmental Science & Technology | 2014
Pietro de Anna; Joaquín Jiménez-Martínez; Hervé Tabuteau; Régis Turuban; Tanguy Le Borgne; Morgane Derrien; Yves Méheust
We propose a new experimental set up to characterize mixing and reactive transport in porous media with a high spatial resolution at the pore scale. The analogous porous medium consists of a Hele-Shaw cell containing a single layer of cylindrical solid grains built by soft lithography. On the one hand, the measurement of the local, intrapore, conservative concentration field is done using a fluorescent tracer. On the other hand, considering a fast bimolecular reaction A + B → C occurring as A displaces B, we quantify the rate of product formation from the spatially resolved measurement of the pore scale reaction rate, using a chemiluminescent reaction. The setup provides a dynamical measurement of the local concentration field over 3 orders of magnitude and allows investigating a wide range of Péclet and Damköhler numbers by varying the flow rate within the cell and the local reaction rate. We use it to study the kinetics of the reaction front between A and B. While the advection-dispersion (Fickian) theory, applied at the continuum scale, predicts a scaling of the cumulative mass of product C as MC ∝ √t, the experiments exhibit two distinct regimes in which the produced mass MC evolves faster than the Fickian behavior. In both regimes the front rate of product formation is controlled by the geometry of the mixing interface between the reactants. Initially, the invading solute is organized in stretched lamellae and the reaction is limited by mass transfer across the lamella boundaries. At longer times the front evolves into a second regime where lamellae coalesce and form a mixing zone whose temporal evolution controls the rate of product formation. In this second regime, the produced mass of C is directly proportional to the volume of the mixing zone defined from conservative species. This interesting property is indeed verified from a comparison of the reactive and conservative data. Hence, for both regimes, the direct measurement of the spatial distribution of the pore scale reaction rate and conservative component concentration is shown to be crucial to understanding the departure from the Fickian scaling as well as quantifying the basic mechanisms that govern the mixing and reaction dynamics at the pore scale.
Philosophical Transactions of the Royal Society A | 2016
Jeffrey D. Hyman; Joaquín Jiménez-Martínez; Hari S. Viswanathan; James William Carey; Mark L. Porter; Esteban Rougier; Satish Karra; Qinjun Kang; Luke P. Frash; Li Chen; Zhou Lei; D. O’Malley; Nataliia Makedonska
Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’.
Chemosphere | 2015
Carmen Corada-Fernández; Joaquín Jiménez-Martínez; Lucila Candela; Eduardo González-Mazo; Pablo A. Lara-Martín
Irrigation with reclaimed water is becoming a common practice in arid- and semi-arid regions as a consequence of structural water resource scarcity. This practice can lead to contamination of the vadose zone if sewage-derived contaminants are not removed properly. In the current work, we have characterized soils from the Guadalete River basin (SW Spain), which are often irrigated with reclaimed water from a nearby wastewater treatment plant and amended using sludge. Physico-chemical, mineralogical and hydraulic properties were measured in soil samples from this area (from surface up to 2 m depth). Emerging contaminants (synthetic surfactants and pharmaceutically active compounds, or PhACs) were also determined. Synthetic surfactants, widely used in personal care products (PCPs), were found in a wide range of concentrations: 73-1300 μg kg(-1) for linear alkylbenzene sulfonates (LAS), 120-496 μg kg(-1) for alkyl ethoxysulfates (AES), 19-1090 μg kg(-1) for alcohol polyethoxylates (AEOs), and 155-280 μg kg(-1) for nonylphenol polyethoxylates (NPEOs). The presence of surfactant homologues with longer alkyl chains was predominant due to their sorption capacity. A positive correlation was found between LAS and AEOs and soil organic carbon and clay content, respectively. Out of 64 PhACs analyzed, only 7 were detected occasionally (diclofenac, metoprolol, fenofibrate, carbamazepine, clarithromycin, famotidine and hydrochlorothiazide), always at very low concentrations (from 0.1 to 1.3 μg kg(-1)).
Desalination and Water Treatment | 2013
Javier Valdes-Abellan; Lucila Candela; Joaquín Jiménez-Martínez; Jose Miguel Saval-Pérez
This study forms part of the CONSOLIDER-TRAGUA and CGL2010-22,168-C03-02/BTE projects financed by the Ministry of Science and Innovation of Spain.
Water Resources Research | 2013
Anna Russian; Marco Dentz; Tanguy Le Borgne; Jesus Carrera; Joaquín Jiménez-Martínez
This paper presents a multicontinuum approach to model fractal temporal scaling of catchment response in hydrological systems. The temporal scaling of discharge is quantified in frequency domain by the transfer function HðxÞ, which is defined as the ratio between the spectra of catchment response and recharge time series. The transfer function may scale with frequency x as HðxÞ x2b. While the classical linear and Dupuit models predict exponents of b52 and b51, observations indicate scalings with noninteger exponents b. Such behaviors have been described by multifractal models, which, however, often lack a relation to the medium characteristics. We revisit and extend the classical linear Dupuit aquifer models and discuss their physical meanings in the light of the resulting aquifer dynamics. On the basis of these classical models, we derive a multicontinuum approach that provides physical recharge models which are able to explain fractal behaviors with exponents 1=2 < b < 2. Furthermore, this approach allows to link the fractal dynamics of the discharge process to the physical aquifer characteristics as reflected in the distribution of storage time scales. We systematically analyze the catchment responses in the proposed multicontinuum models, and identify and quantify the time scales which characterize the dynamics of the catchment response to recharge.
Water Resources Research | 2018
Jeffrey D. Hyman; Joaquín Jiménez-Martínez
We investigate the relative impact of topological, geometric, and hydraulic heterogeneity on transport processes in three-dimensional fracture networks. Focusing on the two largest scales of heterogeneity in these systems, individual fracture and network structure, we compare transport through analogous structured and disordered three-dimensional fracture networks with varying degrees of hydraulic heterogeneity. For the moderate levels of hydraulic heterogeneity we consider, network structure is the dominant control of transport through the networks. Less dispersion, both longitudinal and transverse, is observed in structured networks than in disordered networks, due in part to the higher connectivity in the former, independent of the level of hydraulic heterogeneity. However, increases in dispersion with higher hydraulic heterogeneity are larger in the disordered networks than in the structured networks, thereby indicating that the interplay between structural and hydraulic heterogeneity is nonlinear. We propose a measure of disorder in fracture networks by computing the Shannon entropy of the spectrum of the Laplacian of a weighted graph representation of the networks, where the weights are given by a combination of topological, geometric, and hydraulic properties. This metric, as a relative indicator by comparison between two networks, is a first approach to the dispersion potential and ‘‘mixing capacity’’ of a fracture network.
Soil Science | 2014
Javier Valdes-Abellan; Joaquín Jiménez-Martínez; Lucila Candela
Abstract Determination of reliable solute transport parameters is an essential aspect for the characterization of the mechanisms and processes involved in solute transport (e.g., pesticides, fertilizers, contaminants) through the unsaturated zone. A rapid inexpensive method to estimate the dispersivity parameter at the field scale is presented herein. It is based on the quantification by the X-ray fluorescence solid-state technique of total bromine in soil, along with an inverse numerical modeling approach. The results show that this methodology is a good alternative to the classic Br− determination in soil water by ion chromatography. A good agreement between the observed and simulated total soil Br is reported. The results highlight the potential applicability of both combined techniques to infer readily solute transport parameters under field conditions.
Geophysical Research Letters | 2015
Joaquín Jiménez-Martínez; Pietro de Anna; Hervé Tabuteau; Régis Turuban; Tanguy Le Borgne; Yves Méheust
Porous media in which different fluid phases coexist are common in nature (e.g., vadose zone and gas-oil reservoirs). In partially saturated porous media, the intricate spatial distributions of the wetting and nonwetting phases causes their flow to be focused onto preferential paths. Using a novel 2-D experimental setup allowing pore-scale measurement of concentration fields in a controlled unsaturated flow, we highlight mechanisms by which mixing of an invading fluid with the resident fluid is significantly enhanced when decreasing saturation. The mean scalar dissipation rate is observed to decrease slowly in time, while under saturated conditions it decays rapidly. This slow decrease is due to sustained longitudinal solute fingering, which causes concentration gradients to remain predominantly transverse to the average flow. Consequently, the effective reactivity is found to be much larger than under saturated conditions. These results provide new insights into the role that multiphase flows play on mixing/reaction in porous media.
Applied Energy | 2015
Richard S. Middleton; J. William Carey; Robert P. Currier; Jeffrey D. Hyman; Qinjun Kang; Satish Karra; Joaquín Jiménez-Martínez; Mark L. Porter; Hari S. Viswanathan
Journal of Hydrology | 2009
Joaquín Jiménez-Martínez; Todd H. Skaggs; M.Th. van Genuchten; Lucila Candela