Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joaquín Navascués is active.

Publication


Featured researches published by Joaquín Navascués.


Nature Reviews Molecular Cell Biology | 2007

The multifunctional nucleolus

François-Michel Boisvert; Silvana van Koningsbruggen; Joaquín Navascués; Angus I. Lamond

The nucleolus is a distinct subnuclear compartment that was first observed more than 200 years ago. Nucleoli assemble around the tandemly repeated ribosomal DNA gene clusters and 28S, 18S and 5.8S ribosomal RNAs (rRNAs) are transcribed as a single precursor, which is processed and assembled with the 5S rRNA into ribosome subunits. Although the nucleolus is primarily associated with ribosome biogenesis, several lines of evidence now show that it has additional functions. Some of these functions, such as regulation of mitosis, cell-cycle progression and proliferation, many forms of stress response and biogenesis of multiple ribonucleoprotein particles, will be discussed, as will the relation of the nucleolus to human diseases.


Chromosoma | 2004

Targeting SMN to Cajal bodies and nuclear gems during neuritogenesis

Joaquín Navascués; Maria T. Berciano; Karen E. Tucker; Miguel Lafarga; A. Gregory Matera

Neurite outgrowth is a central feature of neuronal differentiation. PC12 cells are a good model system for studying the peripheral nervous system and the outgrowth of neurites. In addition to the dramatic changes observed in the cytoplasm, neuronal differentiation is also accompanied by striking changes in nuclear morphology. The large and sustained increase in nuclear transcription during neuronal differentiation requires synthesis of a large number of factors involved in pre-mRNA processing. We show that the number and composition of the nuclear subdomains called Cajal bodies and gems changes during the course of N-ras-induced neuritogenesis in the PC12-derived cell line UR61. The Cajal bodies found in undifferentiated cells are largely devoid of the survival of motor neurons (SMN) protein product. As cells shift to a differentiated state, SMN is not only globally upregulated, but is progressively recruited to Cajal bodies. Additional SMN foci (also known as Gemini bodies, gems) can also be detected. Using dual-immunogold labeling electron microscopy and mouse embryonic fibroblasts lacking the coilin protein, we show that gems clearly represent a distinct category of nuclear body.


Journal of Biological Chemistry | 2005

Myc antagonizes Ras-mediated growth arrest in leukemia cells through the inhibition of the Ras-ERK-p21Cip1 pathway.

José P. Vaqué; Joaquín Navascués; Yuzuru Shiio; Marikki Laiho; Nuria Ajenjo; Itsaso Mauleon; David Matallanas; Piero Crespo; Javier León

Even though RAS usually acts as a dominant transforming oncogene, in primary fibroblasts and some established cell lines Ras inhibits proliferation. This can explain the virtual absence of RAS mutations in some types of tumors, such as chronic myeloid leukemia (CML). We report that in the CML cell line K562 Ras induces p21Cip1 expression through the Raf-MEK-ERK pathway. Because K562 cells are deficient for p15INK4b, p16INK4a, p14ARF, and p53, this would be the main mechanism whereby Ras up-regulates p21 expression in these cells. Accordingly, we also found that Ras suppresses K562 growth by signaling through the Raf-ERK pathway. Because c-Myc and Ras cooperate in cell transformation and c-Myc is up-regulated in CML, we investigated the effect of c-Myc on Ras activity in K562 cells. c-Myc antagonized the induction of p21Cip1 mediated by oncogenic H-, K-, and N-Ras and by constitutively activated Raf and ERK2. Activation of the p21Cip1 promoter by Ras was dependent on Sp1/3 binding sites in K562. However, mutational analysis of the p21 promoter and the use of a Gal4-Sp1 chimeric protein strongly suggest that c-Myc affects Sp1 transcriptional activity but not the binding of Sp1 to the p21 promoter. c-Myc-mediated impairment of Ras activity on p21 expression required a transactivation domain, a DNA binding region, and a Max binding region. Moreover, the effect was independent of Miz1 binding to c-Myc. Consistent with its effect on p21Cip1 expression, c-Myc rescued cell growth inhibition induced by Ras. The data suggest that in particular tumor types, such as those associated with CML, c-Myc contributes to tumorigenesis by inhibiting Ras antiproliferative activity.


Journal of Structural Biology | 2008

SUMO-1 transiently localizes to Cajal bodies in mammalian neurons

Joaquín Navascués; Rocio Bengoechea; Olga Tapia; Iñigo Casafont; Maria T. Berciano; Miguel Lafarga

Cajal bodies (CBs) are nuclear organelles involved in the maturation of small nuclear ribonucleoproteins required for the processing of pre-mRNAs. They concentrate coilin, splicing factors and the survival of motor neuron protein (SMN). By using immunocytochemistry and transfection experiments with GFP-SUMO-1, DsRed1-Ubc9, GFP-coilin and GFP-SMN constructs we demonstrate the presence of SUMO-1 and the SUMO conjugating enzyme (Ubc9) in a subset of CBs in undifferentiated neuron-like UR61 cells. Furthermore, SUMO-1 is transiently localized into neuronal CBs from adult nervous tissue in response to osmotic stress or inhibition of methyltransferase activity. SUMO-1-positive CBs contain coilin, SMN and small nuclear ribonucleoproteins, suggesting that they are functional CBs involved in pre-mRNA processing. Since coilin and SMN have several putative motifs of SUMO-1 modification, we suggest that the sumoylation of coilin and/or SMN might play a role in the molecular reorganization of CBs during the neuronal differentiation or stress-response.


Neurobiology of Disease | 2006

The PML-nuclear inclusion of human supraoptic neurons: a new compartment with SUMO-1- and ubiquitin–proteasome-associated domains

Nuria T. Villagra; Joaquín Navascués; Iñigo Casafont; J. Fernando Val-Bernal; Miguel Lafarga; Maria T. Berciano

It is well known that the cell nucleus is organized in structural and functional compartments involved in transcription, RNA processing and protein modifications such as conjugation with SUMO-1 and proteolysis. Promyelocytic leukaemia (PML) bodies are dynamic nuclear structures that concentrate PML protein, SUMO-1 and several sumoylated and non-sumoylated protein regulators of nuclear functions. PML bodies and their associated CBP has been involved in neuronal survival. By light and electron microscopy immunocytochemistry and in situ hybridization we reported the presence, in non-pathological conditions, of a large PML-nuclear inclusion (PML-NI) in human supraoptic neurons. This inclusion appears as a single nuclear structure composed of a capsule enriched in PML, SUMO-1 and CBP proteins and a central lattice of filaments immunoreactive for class III beta-tubulin, ubiquitinated proteins and proteasomes. Furthermore, the PML-NI concentrates the SUMO-conjugating enzyme E2 (UBC9). The PML-NI may be considered a nuclear factory involved in sumoylation and proteolysis via ubiquitin-proteasome system, two nuclear pathways engaged in the control of the nucleoplasmic concentration of active transcriptional regulators. Interestingly, the structural and molecular organization of the PML-NI is related to the Marinesco bodies, age-associated ubiquitinated intranuclear inclusions, and to the intranuclear rodlets enriched in class III beta-tubulin, which are nuclear structures markedly decreased in Alzheimers disease.


Neurobiology of Disease | 2004

PML bodies in reactive sensory ganglion neurons of the Guillain–Barré syndrome

Nuria T. Villagra; José Berciano; Marcos Altable; Joaquín Navascués; Iñigo Casafont; Miguel Lafarga; Maria T. Berciano

Acute inflammatory demyelinating polyneuropathy (AIDP) is a type of Guillain-Barré syndrome (GBS) characterized by primary nerve demyelination sometimes with secondary axonal degeneration. Studies on the fine structure of dorsal root ganglia in AIDP are lacking. Our aim was to investigate the cytology and nuclear organization of primary sensory neurons in AIDP with axonal injury using ultrastructural and immunohistochemical analysis. The light cytology of the L5 dorsal ganglion showed the characteristic findings of neuronal axonal reaction. The organization of chromatin, nucleolus, Cajal bodies, and nuclear pores corresponded to transcriptionally active neurons. However, the hallmark of the nuclear response to axonal injury was the formation of numerous nuclear bodies (NBs; 6.37 +/- 0.6, in the AIDP, vs. 2.53 +/- 0.2, in the control, mean +/- SDM), identified as promyelocytic leukemia (PML) bodies by the presence of the protein PML. In addition to PML protein, nuclear bodies contained SUMO-1 and the transcriptional regulators CREB-binding protein (CBP) and glucocorticoid receptor (GR). The presence of proteasome 19S was also detected in some nuclear bodies. We suggest that neuronal PML bodies could regulate the nuclear concentration of active proteins, a process mediated by protein interactions with PML and SUMO-1 proteins. In the AIDP case, the proliferation of PML bodies may result from the overexpression of some nuclear proteins due to changes in gene expression associated with axonal injury.


Glia | 2002

cAMP-dependent reorganization of the Cajal bodies and splicing machinery in cultured Schwann cells

Rosario Fernandez; Emma Pena; Joaquín Navascués; Iñigo Casafont; Miguel Lafarga; Maria T. Berciano

It is well established that forskolin‐induced elevation of cAMP results in activation of DNA synthesis in Schwann cell cultures. This promitotic response is partially mediated by the Cdk2, which is required for the transition from the G1 to the S phase of the cell cycle. In the present study, we analyze the effects of cAMP elevation in cultured Schwann cells on the transcriptional activity and on the organization of two nuclear compartments involved in pre‐mRNA processing: Cajal bodies (CBs) and splicing factor compartments. Our immunofluorescence and quantitative studies show that forskolin treatment induces a 5.6‐fold increase in the proportion of S phase Schwann cells, detected by a short pulse (20 min) of BrdU incorporation. This increase in DNA synthesis correlates with an activation of global transcription, as is indicated by the higher nuclear incorporation of BrU in nascent RNA. Forskolin treatment significantly increases the percentage of Schwann cells containing typical CBs, which concentrate spliceosomal snRNPs and the survival motor neuron (SMN) protein. This increase in the number of CBs closely correlates with the activation of transcription. Moreover, the occurrence of CBs is significantly higher in BrdU (+) cells than in BrdU (−) cells, indicating that entry in the S phase promotes the formation of CBs. During the S phase, Schwann cell nuclei display higher Cdk2 nuclear staining and concentrate this kinase in CBs. Forskolin also induces a redistribution of the pre‐mRNA splicing factors in Schwann cells. Primary cultures of Schwann cells provide an excellent physiological model to demonstrate that the assembly of CBs is a transcription‐ and replication‐dependent cellular event. Moreover, the S phase accumulation of Cdk2 observed in Schwann cells supports a functional link between CBs and DNA replication, which is mediated by the possible participation of CBs in the regulatory control of histone gene expression. GLIA 40:378–388, 2002.


Journal of Neurocytology | 2004

Reorganization of nuclear compartments of type A neurons of trigeminal ganglia in response to inflammatory injury of peripheral nerve endings

Joaquín Navascués; Iñigo Casafont; Nuria T. Villagra; Miguel Lafarga; Maria T. Berciano

In this study we have taken advantage of the high nuclear responsiveness of type A sensory ganglia neurons to variations of cellular activity to investigate the reorganization and dynamics of nuclear compartments involved in transcription and RNA processing in response to neuronal injury. As experimental model we have used the inflammatory injury of the peripheral nerve endings induced by formalin injection in the areas of ophthalmic/maxillary nerve distribution. We have performed immunofluorescence and confocal laser microscopy analysis with specific antibodies for different nuclear compartments and ultrastructural analysis. The initial response to neuronal injury, within the 3 days post-injury, consisted of chromatin condensation, reduction in the expression level of acetylated histone H4, accumulation of perichromatin granules, reorganization of splicing factors in prominent nuclear speckles, reduction in the number of Cajal bodies and nucleolar alterations. These changes tended to revert by day 7 post-injury and are consistent with a transient inhibition of transcription and RNA processing. Moreover, we have observed an early and sustained expression of the transcription factor c-Jun. These results illustrate the transcription-dependent organization of nuclear compartments in type A trigeminal neurons and also support the importance of the nuclear response to axonal injury as a key component in the regenerative capacity of this neuronal population.


Human Molecular Genetics | 2004

Oculopharyngeal muscular dystrophy-like nuclear inclusions are present in normal magnocellular neurosecretory neurons of the hypothalamus

Maria T. Berciano; Nuria T. Villagra; José L. Ojeda; Joaquín Navascués; Anita Quintal Gomes; Miguel Lafarga; Maria Carmo-Fonseca


Neuroscience | 2006

Nuclear organization and dynamics of transcription sites in rat sensory ganglia neurons detected by incorporation of 5'-fluorouridine into nascent RNA.

Iñigo Casafont; Joaquín Navascués; Emma Pena; Miguel Lafarga; Maria T. Berciano

Collaboration


Dive into the Joaquín Navascués's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma Pena

University of Cantabria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Tapia

University of Cantabria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge