Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joaquín Rullas is active.

Publication


Featured researches published by Joaquín Rullas.


PLOS ONE | 2008

A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes.

Iñigo Angulo-Barturen; María Belén Jiménez-Díaz; Teresa Mulet; Joaquín Rullas; Esperanza Herreros; Santiago Ferrer; Elena Jimenez; Alfonso Mendoza; Javier Regadera; Philip J. Rosenthal; Ian Bathurst; David L. Pompliano; Federico Gómez de las Heras; Domingo Gargallo-Viola

To counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively. Here we describe a reliable falciparum murine model of malaria by generating strains of P. falciparum in vivo that can infect immunodeficient mice engrafted with human erythrocytes. We infected NODscid/β2m−/− mice engrafted with human erythrocytes with P. falciparum obtained from in vitro cultures. After apparent clearance, we obtained isolates of P. falciparum able to grow in peripheral blood of engrafted NODscid/β2m−/− mice. Of the isolates obtained, we expanded in vivo and established the isolate Pf3D70087/N9 as a reference strain for model development. Pf3D70087/N9 caused productive persistent infections in 100% of engrafted mice infected intravenously. The infection caused a relative anemia due to selective elimination of human erythrocytes by a mechanism dependent on parasite density in peripheral blood. Using this model, we implemented and validated a reproducible assay of antimalarial activity useful for drug discovery. Thus, our results demonstrate that P. falciparum contains clones able to grow reproducibly in mice engrafted with human erythrocytes without the use of myeloablative methods.


PLOS ONE | 2013

Tetrahydropyrazolo[1,5-a]Pyrimidine-3-Carboxamide and N-Benzyl-6′,7′-Dihydrospiro[Piperidine-4,4′-Thieno[3,2-c]Pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis targeting MmpL3

Modesto J. Remuiñán; Esther Pérez-Herrán; Joaquín Rullas; Carlos Alemparte; María Martínez-Hoyos; David J. Dow; Johnson Afari; Jorge Esquivias; Elena Jimenez; Fátima Ortega-Muro; María Teresa Fraile-Gabaldón; Vickey L. Spivey; Nicholas J. Loman; Mark J. Pallen; Chrystala Constantinidou; Douglas J. Minick; Mónica Cacho; María José Rebollo-López; Carolina González; Verónica Sousa; Iñigo Angulo-Barturen; Alfonso Mendoza-Losana; David Barros; Gurdyal S. Besra; Lluis Ballell; Nicholas Cammack

Mycobacterium tuberculosis is a major human pathogen and the causative agent for the pulmonary disease, tuberculosis (TB). Current treatment programs to combat TB are under threat due to the emergence of multi-drug and extensively-drug resistant TB. As part of our efforts towards the discovery of new anti-tubercular leads, a number of potent tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide (THPP) and N-benzyl-6′,7′-dihydrospiro[piperidine-4,4′-thieno[3,2-c]pyran] (Spiro) analogues were recently identified against Mycobacterium tuberculosis and Mycobacterium bovis BCG through a high-throughput whole-cell screening campaign. Herein, we describe the attractive in vitro and in vivo anti-tubercular profiles of both lead series. The generation of M. tuberculosis spontaneous mutants and subsequent whole genome sequencing of several resistant mutants identified single mutations in the essential mmpL3 gene. This ‘genetic phenotype’ was further confirmed by a ‘chemical phenotype’, whereby M. bovis BCG treated with both the THPP and Spiro series resulted in the accumulation of trehalose monomycolate. In vivo efficacy evaluation of two optimized THPP and Spiro leads showed how the compounds were able to reduce >2 logs bacterial cfu counts in the lungs of infected mice.


Journal of Medicinal Chemistry | 2014

Encoded Library Technology as a Source of Hits for the Discovery and Lead Optimization of a Potent and Selective Class of Bactericidal Direct Inhibitors of Mycobacterium tuberculosis InhA

Lourdes Encinas; Heather O’Keefe; Margarete Neu; Modesto J. Remuiñán; Amish Patel; Ana Guardia; Christopher P. Davie; Natalia Pérez-Macías; Hongfang Yang; Jeff A. Messer; Esther Pérez-Herrán; Paolo A. Centrella; Daniel Álvarez-Gómez; Matthew A. Clark; Sophie Huss; Gary O’Donovan; Fátima Ortega-Muro; William McDowell; Pablo Castañeda; Christopher C. Arico-Muendel; Stane Pajk; Joaquín Rullas; Iñigo Angulo-Barturen; Emilio Alvarez-Ruiz; Alfonso Mendoza-Losana; Lluís Pagès; Julia Castro-Pichel; Ghotas Evindar

Tuberculosis (TB) is one of the worlds oldest and deadliest diseases, killing a person every 20 s. InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis, is the target of the frontline antitubercular drug isoniazid (INH). Compounds that directly target InhA and do not require activation by mycobacterial catalase peroxidase KatG are promising candidates for treating infections caused by INH resistant strains. The application of the encoded library technology (ELT) to the discovery of direct InhA inhibitors yielded compound 7 endowed with good enzymatic potency but with low antitubercular potency. This work reports the hit identification, the selected strategy for potency optimization, the structure-activity relationships of a hundred analogues synthesized, and the results of the in vivo efficacy studies performed with the lead compound 65.


Cytometry Part A | 2005

Improvement of detection specificity of Plasmodium-infected murine erythrocytes by flow cytometry using autofluorescence and YOYO-1.

María Belén Jiménez-Díaz; Joaquín Rullas; Teresa Mulet; Laura Fernández; Carmen Bravo; Domingo Gargallo-Viola; Iñigo Angulo-Barturen

Microscopic analysis of blood smears is currently the most frequently used method to measure parasitemias in experiments of drug efficacy in murine models of malaria. However, it is subjective and labour intensive, which preclude its utilization in large‐scale evaluation programs. Flow cytometry is an alternative method, but due to the limited specificity achieved with the currently available techniques, it has not been widely used in murine models of malaria during preclinical evaluation. We describe a new flow cytometric method based on the differences of autofluorescence and DNA content measured after staining with YOYO‐1 that are observed in infected erythrocytes compared with noninfected erythrocytes.


PLOS ONE | 2013

Improved BM212 MmpL3 Inhibitor Analogue Shows Efficacy in Acute Murine Model of Tuberculosis Infection

Giovanna Poce; Robert H. Bates; Salvatore Alfonso; Martina Cocozza; Lluis Ballell; Joaquín Rullas; Fátima Ortega; Alessandro De Logu; E Agus; Valentina La Rosa; Maria Rosalia Pasca; Edda De Rossi; Baojie Wae; Scott G. Franzblau; Fabrizio Manetti; Maurizio Botta; Mariangela Biava

1,5-Diphenyl pyrroles were previously identified as a class of compounds endowed with high in vitro efficacy against M. tuberculosis. To improve the physical chemical properties and drug-like parameters of this class of compounds, a medicinal chemistry effort was undertaken. By selecting the optimal substitution patterns for the phenyl rings at N1 and C5 and by replacing the thiomorpholine moiety with a morpholine one, a new series of compounds was produced. The replacement of the sulfur with oxygen gave compounds with lower lipophilicity and improved in vitro microsomal stability. Moreover, since the parent compound of this family has been shown to target MmpL3, mycobacterial mutants resistant to two compounds have been isolated and characterized by sequencing the mmpL3 gene; all the mutants showed point mutations in this gene. The best compound identified to date was progressed to dose-response studies in an acute murine TB infection model. The resulting ED99 of 49 mg/Kg is within the range of commonly employed tuberculosis drugs, demonstrating the potential of this chemical series. The in vitro and in vivo target validation evidence presented here adds further weight to MmpL3 as a druggable target of interest for anti-tubercular drug discovery.


Antimicrobial Agents and Chemotherapy | 2010

Fast Standardized Therapeutic-Efficacy Assay for Drug Discovery against Tuberculosis

Joaquín Rullas; Juan Ignacio García; Manuela Beltrán; Pere-Joan Cardona; Neus Cáceres; Jose Garcia-Bustos; Iñigo Angulo-Barturen

ABSTRACT Murine models of Mycobacteriumtuberculosis infection are essential tools in drug discovery. Here we describe a fast standardized 9-day acute assay intended to measure the efficacy of drugs against M. tuberculosis growing in the lungs of immunocompetent mice. This assay is highly reproducible, allows good throughput, and was validated for drug lead optimization using isoniazid, rifampin, ethambutol, pyrazinamide, linezolid, and moxifloxacin.


Nature microbiology | 2016

THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria.

Jonathan A. G. Cox; Katherine A. Abrahams; Carlos Alemparte; Sonja Ghidelli-Disse; Joaquín Rullas; Iñigo Angulo-Barturen; Albel Singh; Sudagar S. Gurcha; Vijayashankar Nataraj; Stephen Bethell; Modesto J. Remuiñán; Lourdes Encinas; Peter J. Jervis; Nicholas Cammack; Apoorva Bhatt; Ulrich Kruse; Marcus Bantscheff; Klaus Fütterer; David Barros; Lluis Ballell; Gerard Drewes; Gurdyal S. Besra

Phenotypic screens for bactericidal compounds against drug-resistant tuberculosis are beginning to yield novel inhibitors. However, reliable target identification remains challenging. Here, we show that tetrahydropyrazo[1,5-a]pyrimidine-3-carboxamide (THPP) selectively pulls down EchA6 in a stereospecific manner, instead of the previously assigned target Mycobacterium tuberculosis MmpL3. While homologous to mammalian enoyl-coenzyme A (CoA) hydratases, EchA6 is non-catalytic yet essential and binds long-chain acyl-CoAs. THPP inhibitors compete with CoA-binding, suppress mycolic acid synthesis, and are bactericidal in a mouse model of chronic tuberculosis infection. A point mutation, W133A, abrogated THPP-binding and increased both the in vitro minimum inhibitory concentration and the in vivo effective dose 99 in mice. Surprisingly, EchA6 interacts with selected enzymes of fatty acid synthase II (FAS-II) in bacterial two-hybrid assays, suggesting essentiality may be linked to feeding long-chain fatty acids to FAS-II. Finally, our data show that spontaneous resistance-conferring mutations can potentially obscure the actual target or alternative targets of small molecule inhibitors.


Nature Communications | 2016

Identification of KasA as the cellular target of an anti-tubercular scaffold

Katherine A. Abrahams; Chun-wa Chung; Sonja Ghidelli-Disse; Joaquín Rullas; María José Rebollo-López; Sudagar S. Gurcha; Jonathan A. G. Cox; Alfonso Mendoza; Elena Jimenez-Navarro; María S. Martínez-Martínez; Margarete Neu; Anthony Shillings; Paul Homes; Argyrides Argyrou; Ruth Casanueva; Nicholas J. Loman; Patrick J. Moynihan; Joël Lelièvre; Carolyn Selenski; Matthew Axtman; Laurent Kremer; Marcus Bantscheff; Iñigo Angulo-Barturen; Mónica Cacho Izquierdo; Nicholas Cammack; Gerard Drewes; Lluis Ballell; David Barros; Gurdyal S. Besra; Robert H. Bates

Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis β-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography. Finally, M. tuberculosis GSK3011724A-resistant mutants increase the in vitro minimum inhibitory concentration and the in vivo 99% effective dose in mice, establishing in vitro and in vivo target engagement. Surprisingly, the lack of target engagement of the related β-ketoacyl synthases (FabH and KasB) suggests a different mode of inhibition when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria. These results clearly identify KasA as the biological target of GSK3011724A and validate this enzyme for further drug discovery efforts against tuberculosis.


Antimicrobial Agents and Chemotherapy | 2016

Discovery of novel oral protein synthesis inhibitors of Mycobacterium tuberculosis that target leucyl-tRNA synthetase

Andrés Palencia; Xianfeng Li; Wei Bu; Wai Choi; Charles Z. Ding; Eric E. Easom; Lisa Feng; Vincent Hernandez; Paul Houston; Liang Liu; Maliwan Meewan; Manisha Mohan; Fernando Rock; Holly Sexton; Suoming Zhang; Yasheen Zhou; Baojie Wan; Yuehong Wang; Scott G. Franzblau; Lisa K. Woolhiser; Veronica Gruppo; Anne J. Lenaerts; Theresa O'Malley; Tanya Parish; Christopher B. Cooper; M. Gerard Waters; Zhenkun Ma; Thomas R. Ioerger; James C. Sacchettini; Joaquín Rullas

ABSTRACT The recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains of Mycobacterium tuberculosis highlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective against M. tuberculosis in TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), to M. tuberculosis LeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity against M. tuberculosis. Importantly, their good oral bioavailability translates into in vivo efficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid.


Antimicrobial Agents and Chemotherapy | 2015

Combinations of β-Lactam Antibiotics Currently in Clinical Trials Are Efficacious in a DHP-I-Deficient Mouse Model of Tuberculosis Infection

Joaquín Rullas; Neeraj Dhar; John D. McKinney; Adolfo García-Pérez; Joël Lelièvre; Andreas H. Diacon; Jean-Emmanuel Hugonnet; Michel Arthur; Iñigo Angulo-Barturen; David Barros-Aguirre; Lluis Ballell

ABSTRACT We report here a dehydropeptidase-deficient murine model of tuberculosis (TB) infection that is able to partially uncover the efficacy of marketed broad-spectrum β-lactam antibiotics alone and in combination. Reductions of up to 2 log CFU in the lungs of TB-infected mice after 8 days of treatment compared to untreated controls were obtained at blood drug concentrations and time above the MIC (T>MIC) below clinically achievable levels in humans. These findings provide evidence supporting the potential of β-lactams as safe and mycobactericidal components of new combination regimens against TB with or without resistance to currently used drugs.

Collaboration


Dive into the Joaquín Rullas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge