Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joaquin Sanchis is active.

Publication


Featured researches published by Joaquin Sanchis.


Journal of the American Chemical Society | 2009

Directed Evolution of an Enantioselective Epoxide Hydrolase: Uncovering the Source of Enantioselectivity at Each Evolutionary Stage

Manfred T. Reetz; Marco Bocola; Li-Wen Wang; Joaquin Sanchis; Annette Cronin; Michael Arand; Jinyu Zou; Alain Robert Archelas; Anne-Lise Bottalla; Agata Naworyta; Sherry L. Mowbray

Directed evolution of enzymes as enantioselective catalysts in organic chemistry is an alternative to traditional asymmetric catalysis using chiral transition-metal complexes or organocatalysts, the different approaches often being complementary. Moreover, directed evolution studies allow us to learn more about how enzymes perform mechanistically. The present study concerns a previously evolved highly enantioselective mutant of the epoxide hydrolase from Aspergillus niger in the hydrolytic kinetic resolution of racemic glycidyl phenyl ether. Kinetic data, molecular dynamics calculations, molecular modeling, inhibition experiments, and X-ray structural work for the wild-type (WT) enzyme and the best mutant reveal the basis of the large increase in enantioselectivity (E = 4.6 versus E = 115). The overall structures of the WT and the mutant are essentially identical, but dramatic differences are observed in the active site as revealed by the X-ray structures. All of the experimental and computational results support a model in which productive positioning of the preferred (S)-glycidyl phenyl ether, but not the (R)-enantiomer, forms the basis of enhanced enantioselectivity. Predictions regarding substrate scope and enantioselectivity of the best mutant are shown to be possible.


Current Opinion in Biotechnology | 2011

Polymer--drug conjugates as nano-sized medicines.

Fabiana Canal; Joaquin Sanchis; María J. Vicent

Polymer Therapeutics have enormously evolved in the past decades. Several polymeric drugs as well as polymer-protein conjugates have been in the market since the 90s, but although polymer-drug conjugates are already in clinical trials they still need to reach this final goal. There are four main convergent strategies to move this platform technology further. First, exploitation of new molecular targets in cancer therapy and design of polymer-drug conjugates as treatments for other diseases. Second, the development of combination therapy. Third, attempts to improve polymer chemistry, including the use of new well-defined architectures and the optimization of the advanced characterization techniques essential to transform a promising conjugate into a candidate for clinical evaluation. Finally, increased understanding of polymer conjugate features that govern clinical risk-benefit is leading to an appreciation of clinical biomarkers that will open new possibilities for personalized therapy.


Biomaterials | 2011

Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel

Anat Eldar-Boock; Keren Miller; Joaquin Sanchis; Ruth Lupu; María J. Vicent; Ronit Satchi-Fainaro

Angiogenesis plays a prominent role in cancer progression. Anti-angiogenic therapy therefore, either alone or in combination with conventional cytotoxic therapy, offers a promising therapeutic approach. Paclitaxel (PTX) is a widely-used potent cytotoxic drug that also exhibits anti-angiogenic effects at low doses. However, its use, at its full potential, is limited by severe side effects. Here we designed and synthesized a targeted conjugate of PTX, a polymer and an integrin-targeted moiety resulting in a polyglutamic acid (PGA)-PTX-E-[c(RGDfK)(2)] nano-scaled conjugate. Polymer conjugation converted PTX to a macromolecule, which passively targets the tumor tissue exploiting the enhanced permeability and retention effect, while extravasating via the leaky tumor neovasculature. The cyclic RGD peptidomimetic enhanced the effects previously seen for PGA-PTX alone, utilizing the additional active targeting to the α(v)β(3) integrin overexpressed on tumor endothelial and epithelial cells. This strategy is particularly valuable when tumors are well-vascularized, but they present poor vascular permeability. We show that PGA is enzymatically-degradable leading to PTX release under lysosomal acidic pH. PGA-PTX-E-[c(RGDfK)(2)] inhibited the growth of proliferating α(v)β(3)-expressing endothelial cells and several cancer cells. We also showed that PGA-PTX-E-[c(RGDfK)(2)] blocked endothelial cells migration towards vascular endothelial growth factor; blocked capillary-like tube formation; and inhibited endothelial cells attachment to fibrinogen. Orthotopic studies in mice demonstrated preferential tumor accumulation of the RGD-bearing conjugate, leading to enhanced anti-tumor efficacy and a marked decrease in toxicity as compared with free PTX-treated mice.


Applied Microbiology and Biotechnology | 2008

Improved PCR method for the creation of saturation mutagenesis libraries in directed evolution: application to difficult-to-amplify templates

Joaquin Sanchis; Layla Fernández; J. Daniel Carballeira; Jullien Drone; Yosephine Gumulya; Horst Höbenreich; Daniel Kahakeaw; Sabrina Kille; Renate Lohmer; Jérôme J.-P. Peyralans; John Podtetenieff; Shreenath Prasad; Pankaj Soni; Andreas Taglieber; Sheng Wu; Felipe E. Zilly; Manfred T. Reetz

Saturation mutagenesis constitutes a powerful method in the directed evolution of enzymes. Traditional protocols of whole plasmid amplification such as Stratagene’s QuikChange™ sometimes fail when the templates are difficult to amplify. In order to overcome such restrictions, we have devised a simple two-primer, two-stage polymerase chain reaction (PCR) method which constitutes an improvement over existing protocols. In the first stage of the PCR, both the mutagenic primer and the antiprimer that are not complementary anneal to the template. In the second stage, the amplified sequence is used as a megaprimer. Sites composed of one or more residues can be randomized in a single PCR reaction, irrespective of their location in the gene sequence.The method has been applied to several enzymes successfully, including P450-BM3 from Bacillus megaterium, the lipases from Pseudomonas aeruginosa and Candida antarctica and the epoxide hydrolase from Aspergillus niger. Here, we show that megaprimer size as well as the direction and design of the antiprimer are determining factors in the amplification of the plasmid. Comparison of the results with the performances of previous protocols reveals the efficiency of the improved method.


ChemBioChem | 2008

Constructing and analyzing the fitness landscape of an experimental evolutionary process.

Manfred T. Reetz; Joaquin Sanchis

Iterative saturation mutagenesis (ISM) is a promising approach to more efficient directed evolution, especially for enhancing the enantioselectivity and/or thermostability of enzymes. This was demonstrated previously for an epoxide hydrolase (EH), after five sets of mutations led to a stepwise increase in enantioselectivity. This study utilizes these results to illuminate the nature of ISM, and identify the reasons for its operational efficacy. By applying a deconvolution strategy to the five sets of mutations and measuring the enantioselectivity factors (E) of the EH variants, ΔΔG≠ values become accessible. With these values, the construction of the complete fitness‐pathway landscape is possible. The free energy profiles of the 5!=120 evolutionary pathways leading from the wild‐type to the best mutant show that 55 trajectories are energetically favored, one of which is the originally observed route. This particular pathway was analyzed in terms of epistatic effects operating between the sets of mutations at all evolutionary stages. The degree of synergism increases as the stepwise evolutionary process proceeds. When encountering a local minimum in a disfavored pathway, that is, in the case of a dead end, choosing another set of mutations at a previous stage puts the evolutionary process back on an energetically favored trajectory. The type of analysis presented here might be useful when evaluating other mutagenesis methods and strategies in directed evolution.


ChemBioChem | 2012

Many Pathways in Laboratory Evolution Can Lead to Improved Enzymes: How to Escape from Local Minima

Yosephine Gumulya; Joaquin Sanchis; Manfred T. Reetz

Directed evolution is a method to tune the properties of enzymes for use in organic chemistry and biotechnology, to study enzyme mechanisms, and to shed light on Darwinian evolution in nature. In order to enhance its efficacy, iterative saturation mutagenesis (ISM) was implemented. This involves: 1) randomized mutation of appropriate sites of one or more residues; 2) screening of the initial mutant libraries for properties such as enzymatic rate, stereoselectivity, or thermal robustness; 3) use of the best hit in a given library as a template for saturation mutagenesis at the other sites; and 4) continuation of the process until the desired degree of enzyme improvement has been reached. Despite the success of a number of ISM‐based studies, the question of the optimal choice of the many different possible pathways remains unanswered. Here we considered a complete 4‐site ISM scheme. All 24 pathways were systematically explored, with the epoxide hydrolase from Aspergillus niger as the catalyst in the stereoselective hydrolytic kinetic resolution of a chiral epoxide. All 24 pathways were found to provide improved mutants with notably enhanced stereoselectivity. When a library failed to contain any hits, non‐improved or even inferior mutants were used as templates in the continuation of the evolutionary pathway, thereby escaping from the local minimum. These observations have ramifications for directed evolution in general and for evolutionary biological studies in which protein engineering techniques are applied.


Molecular BioSystems | 2009

Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis

Manfred T. Reetz; Daniel Kahakeaw; Joaquin Sanchis

Directed evolution has emerged as a general way to engineer essentially any catalytic property of enzymes, but due to the bottleneck imposed by the necessity to screen large libraries of mutants, it is often time-consuming. In order to make this type of protein engineering faster and more efficient than in the past, improved methods for probing protein sequence space need to be developed. This review focuses on recent advances which help to solve the traditional numbers problem in laboratory evolution, as in the directed evolution of enantioselective enzymes. Our contribution in this endeavour is iterative saturation mutagenesis (ISM), which can be used to enhance the enantioselectivity and/or the thermostability of enzymes. The option to use reduced amino acid alphabets as defined by the appropriate codon degeneracies supplements in a crucial way the toolbox in this knowledge-guided approach to laboratory evolution.


Chemistry: A European Journal | 2012

Enhancing the Efficiency of Directed Evolution in Focused Enzyme Libraries by the Adaptive Substituent Reordering Algorithm

Xiao-Jiang Feng; Joaquin Sanchis; Manfred T. Reetz; Herschel Rabitz

Directed evolution is a broadly successful strategy for protein engineering in the quest to enhance the stereoselectivity, activity, and thermostability of enzymes. To increase the efficiency of directed evolution based on iterative saturation mutagenesis, the adaptive substituent reordering algorithm (ASRA) is introduced here as an alternative to traditional quantitative structure-activity relationship (QSAR) methods for identifying potential protein mutants with desired properties from minimal sampling of focused libraries. The operation of ASRA depends on identifying the underlying regularity of the protein property landscape, allowing it to make predictions without explicit knowledge of the structure-property relationships. In a proof-of-principle study, ASRA identified all or most of the best enantioselective mutants among the synthesized epoxide hydrolase from Aspergillus niger, in the absence of peptide seeds with high E-values. ASRA even revealed a laboratory error from irregularities of the reordered E-value landscape alone.


Biomacromolecules | 2015

Triblock copolymer nanovesicles for pH-responsive targeted delivery and controlled release of siRNA to cancer cells

Elena Gallon; Teresa Matini; Luana Sasso; Giuseppe Mantovani; Ana Armiñan de Benito; Joaquin Sanchis; Paolo Caliceti; Cameron Alexander; María J. Vicent; Stefano Salmaso

New pH-responsive polymersomes for active anticancer oligonucleotide delivery were prepared from triblock copolymers. The delivery systems were formed by two terminal hydrophilic blocks, PEG and polyglycerolmethacrylate (poly-GMA), and a central weakly basic block, polyimidazole-hexyl methacrylate (poly-ImHeMA), which can complex with oligonucleotides and control vesicle formation/disassembly via pH variations. Targeted polymersomes were prepared by mixing folate-derivatized and underivatized copolymers. At pH 5, ds-DNA was found to complex with the pH-responsive copolymers at a N/P molar ratio above ∼2:1, which assisted the encapsulation of ds-DNA in the polymersomes, while low association was observed at pH 7.4. Cytotoxicity studies performed on folate receptor overexpressing KB and B16-F10 cells and low folate receptor expressing MCF-7 cells showed high tolerance of the polymersomes at up to 3 mg/mL concentration. Studies performed with red blood cells showed that at pH 5.0 the polymersomes have endosomolytic properties. Cytofluorimetric studies showed a 5.5-fold higher uptake of ds-DNA loaded folate-functional polymersomes in KB cells compared to nontargeted polymersomes. In addition, ds-DNA was found to be localized both in the nucleus and in the cytosol. The incubation of luciferase transfected B16-F10 cells with targeted polymersomes loaded with luciferase and Hsp90 expression silencing siRNAs yielded 31 and 23% knockdown in target protein expression, respectively.


Polymer Chemistry | 2014

Synthesis and characterization of variable conformation pH responsive block co-polymers for nucleic acid delivery and targeted cell entry†

Teresa Matini; Nora Francini; Anna Battocchio; Sebastian G. Spain; Giuseppe Mantovani; María J. Vicent; Joaquin Sanchis; Elena Gallon; Francesca Mastrotto; Stefano Salmaso; Paolo Caliceti; Cameron Alexander

Responsive materials that change conformation with varying pH have been prepared from a range of amphiphilic block co-polymers. The individual blocks are composed of (a) permanently hydrophilic chains with neutral functionality and (b) acrylate polymers with weakly basic side-chains. Variation in co-monomer content, molar mass and block ratios/compositions leads to a range of pH-responses, manifest through reversible self-assembly into micelles and/or polymersomes. These transitions can be tuned to achieve environmental responses in a pH range from 5–7, as shown by turbidimetric analysis, NMR and dynamic light scattering measurements (DLS). Further characterization by transmission electron microscopy (TEM) indicates that polymersomes with diameters of 100–200 nm can be formed under certain pH-ranges where the weakly basic side-chains are deprotonated. The ability of the systems assembled with these polymers to act as pH-responsive containers is shown by DNA encapsulation and release studies, and their potential for application as vehicle for drug delivery is proved by cell metabolic activity and cell uptake measurements.

Collaboration


Dive into the Joaquin Sanchis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa Matini

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge