Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jocelyn Chanussot is active.

Publication


Featured researches published by Jocelyn Chanussot.


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2012

Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

José M. Bioucas-Dias; Antonio Plaza; Nicolas Dobigeon; Mario Parente; Qian Du; Paul D. Gader; Jocelyn Chanussot

Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustards unmixing tutorial to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.


IEEE Transactions on Geoscience and Remote Sensing | 2008

Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles

Mathieu Fauvel; Jon Atli Benediktsson; Jocelyn Chanussot; Johannes R. Sveinsson

Classification of hyperspectral data with high spatial resolution from urban areas is discussed. An approach has been proposed which is based on using several principal components from the hyperspectral data and build morphological profiles. These profiles can be used all together in one extended morphological profile. A shortcoming of the approach is that it is primarily designed for classification of urban structures and it does not fully utilize the spectral information in the data. Similarly, a pixel-wise classification solely based on the spectral content can be performed, but it lacks information on the structure of the features in the image. An extension is proposed in this paper in order to overcome these dual problems. The proposed method is based on the data fusion of the morphological information and the original hyperspectral data: the two vectors of attributes are concatenated. After a reduction of the dimensionality using Decision Boundary Feature Extraction, the final classification is achieved using a Support Vector Machines classifier. The proposed approach is tested in experiments on ROSIS data from urban areas. Significant improvements are achieved in terms of accuracies when compared to results of approaches based on the use of morphological profiles based on PCs only and conventional spectral classification.


Proceedings of the IEEE | 2013

Advances in Spectral-Spatial Classification of Hyperspectral Images

Mathieu Fauvel; Yuliya Tarabalka; Jon Atli Benediktsson; Jocelyn Chanussot; James C. Tilton

Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.


IEEE Geoscience and Remote Sensing Magazine | 2013

Hyperspectral Remote Sensing Data Analysis and Future Challenges

José M. Bioucas-Dias; Antonio Plaza; Gustavo Camps-Valls; Paul Scheunders; Nasser M. Nasrabadi; Jocelyn Chanussot

Hyperspectral remote sensing technology has advanced significantly in the past two decades. Current sensors onboard airborne and spaceborne platforms cover large areas of the Earth surface with unprecedented spectral, spatial, and temporal resolutions. These characteristics enable a myriad of applications requiring fine identification of materials or estimation of physical parameters. Very often, these applications rely on sophisticated and complex data analysis methods. The sources of difficulties are, namely, the high dimensionality and size of the hyperspectral data, the spectral mixing (linear and nonlinear), and the degradation mechanisms associated to the measurement process such as noise and atmospheric effects. This paper presents a tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing. In all topics, we describe the state-of-the-art, provide illustrative examples, and point to future challenges and research directions.


IEEE Transactions on Geoscience and Remote Sensing | 2009

Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques

Yuliya Tarabalka; Jon Atli Benediktsson; Jocelyn Chanussot

A new spectral-spatial classification scheme for hyperspectral images is proposed. The method combines the results of a pixel wise support vector machine classification and the segmentation map obtained by partitional clustering using majority voting. The ISODATA algorithm and Gaussian mixture resolving techniques are used for image clustering. Experimental results are presented for two hyperspectral airborne images. The developed classification scheme improves the classification accuracies and provides classification maps with more homogeneous regions, when compared to pixel wise classification. The proposed method performs particularly well for classification of images with large spatial structures and when different classes have dissimilar spectral responses and a comparable number of pixels.


IEEE Transactions on Geoscience and Remote Sensing | 2007

Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest

Luciano Alparone; Lucien Wald; Jocelyn Chanussot; Claire Thomas; Paolo Gamba; Lori Mann Bruce

In January 2006, the Data Fusion Committee of the IEEE Geoscience and Remote Sensing Society launched a public contest for pansharpening algorithms, which aimed to identify the ones that perform best. Seven research groups worldwide participated in the contest, testing eight algorithms following different philosophies [component substitution, multiresolution analysis (MRA), detail injection, etc.]. Several complete data sets from two different sensors, namely, QuickBird and simulated Pleiades, were delivered to all participants. The fusion results were collected and evaluated, both visually and objectively. Quantitative results of pansharpening were possible owing to the availability of reference originals obtained either by simulating the data collected from the satellite sensor by means of higher resolution data from an airborne platform, in the case of the Pleiades data, or by first degrading all the available data to a coarser resolution and saving the original as the reference, in the case of the QuickBird data. The evaluation results were presented during the special session on data fusion at the 2006 international geoscience and remote sensing symposium in Denver, and these are discussed in further detail in this paper. Two algorithms outperform all the others, the visual analysis being confirmed by the quantitative evaluation. These two methods share the same philosophy: they basically rely on MRA and employ adaptive models for the injection of high-pass details.


IEEE Geoscience and Remote Sensing Letters | 2010

SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images

Yuliya Tarabalka; Mathieu Fauvel; Jocelyn Chanussot; Jon Atli Benediktsson

The high number of spectral bands acquired by hyperspectral sensors increases the capability to distinguish physical materials and objects, presenting new challenges to image analysis and classification. This letter presents a novel method for accurate spectral-spatial classification of hyperspectral images. The proposed technique consists of two steps. In the first step, a probabilistic support vector machine pixelwise classification of the hyperspectral image is applied. In the second step, spatial contextual information is used for refining the classification results obtained in the first step. This is achieved by means of a Markov random field regularization. Experimental results are presented for three hyperspectral airborne images and compared with those obtained by recently proposed advanced spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.


Pattern Recognition | 2010

Segmentation and classification of hyperspectral images using watershed transformation

Yuliya Tarabalka; Jocelyn Chanussot; Jon Atli Benediktsson

Hyperspectral imaging, which records a detailed spectrum of light for each pixel, provides an invaluable source of information regarding the physical nature of the different materials, leading to the potential of a more accurate classification. However, high dimensionality of hyperspectral data, usually coupled with limited reference data available, limits the performances of supervised classification techniques. The commonly used pixel-wise classification lacks information about spatial structures of the image. In order to increase classification performances, integration of spatial information into the classification process is needed. In this paper, we propose to extend the watershed segmentation algorithm for hyperspectral images, in order to define information about spatial structures. In particular, several approaches to compute a one-band gradient function from hyperspectral images are proposed and investigated. The accuracy of the watershed algorithms is demonstrated by the further incorporation of the segmentation maps into a classifier. A new spectral-spatial classification scheme for hyperspectral images is proposed, based on the pixel-wise Support Vector Machines classification, followed by majority voting within the watershed regions. Experimental segmentation and classification results are presented on two hyperspectral images. It is shown in experiments that when the number of spectral bands increases, the feature extraction and the use of multidimensional gradients appear to be preferable to the use of vectorial gradients. The integration of the spatial information from the watershed segmentation in the hyperspectral image classifier improves the classification accuracies and provides classification maps with more homogeneous regions, compared to pixel-wise classification and previously proposed spectral-spatial classification techniques. The developed method is especially suitable for classifying images with large spatial structures.


IEEE Transactions on Geoscience and Remote Sensing | 2008

Synthesis of Multispectral Images to High Spatial Resolution: A Critical Review of Fusion Methods Based on Remote Sensing Physics

Claire Thomas; Thierry Ranchin; Lucien Wald; Jocelyn Chanussot

Our framework is the synthesis of multispectral images (MS) at higher spatial resolution, which should be as close as possible to those that would have been acquired by the corresponding sensors if they had this high resolution. This synthesis is performed with the help of a high spatial but low spectral resolution image: the panchromatic (Pan) image. The fusion of the Pan and MS images is classically referred as pan-sharpening. A fused product reaches good quality only if the characteristics and differences between input images are taken into account. Dissimilarities existing between these two data sets originate from two causes-different times and different spectral bands of acquisition. Remote sensing physics should be carefully considered while designing the fusion process. Because of the complexity of physics and the large number of unknowns, authors are led to make assumptions to drive their development. Weaknesses and strengths of each reported method are raised and confronted to these physical constraints. The conclusion of this critical survey of literature is that the choice in the assumptions for the development of a method is crucial, with the risk to drastically weaken fusion performance. It is also shown that the Amelioration de la Resolution Spatiale par Injection de Structures concept prevents from introducing spectral distortion into fused products and offers a reliable framework for further developments.


IEEE Transactions on Geoscience and Remote Sensing | 2015

A Critical Comparison Among Pansharpening Algorithms

Gemine Vivone; Luciano Alparone; Jocelyn Chanussot; Mauro Dalla Mura; Andrea Garzelli; Giorgio Licciardi; Rocco Restaino; Lucien Wald

Pansharpening aims at fusing a multispectral and a panchromatic image, featuring the result of the processing with the spectral resolution of the former and the spatial resolution of the latter. In the last decades, many algorithms addressing this task have been presented in the literature. However, the lack of universally recognized evaluation criteria, available image data sets for benchmarking, and standardized implementations of the algorithms makes a thorough evaluation and comparison of the different pansharpening techniques difficult to achieve. In this paper, the authors attempt to fill this gap by providing a critical description and extensive comparisons of some of the main state-of-the-art pansharpening methods. In greater details, several pansharpening algorithms belonging to the component substitution or multiresolution analysis families are considered. Such techniques are evaluated through the two main protocols for the assessment of pansharpening results, i.e., based on the full- and reduced-resolution validations. Five data sets acquired by different satellites allow for a detailed comparison of the algorithms, characterization of their performances with respect to the different instruments, and consistency of the two validation procedures. In addition, the implementation of all the pansharpening techniques considered in this paper and the framework used for running the simulations, comprising the two validation procedures and the main assessment indexes, are collected in a MATLAB toolbox that is made available to the community.

Collaboration


Dive into the Jocelyn Chanussot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro Dalla Mura

Grenoble Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mathieu Fauvel

Grenoble Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Giorgio Licciardi

Grenoble Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Miguel Angel Veganzones

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge