Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jocelyn E. Wiggins is active.

Publication


Featured researches published by Jocelyn E. Wiggins.


Journal of The American Society of Nephrology | 2005

Podocyte Depletion Causes Glomerulosclerosis: Diphtheria Toxin–Induced Podocyte Depletion in Rats Expressing Human Diphtheria Toxin Receptor Transgene

Bryan L. Wharram; Meera Goyal; Jocelyn E. Wiggins; Silja K. Sanden; Sabiha Hussain; Wanda E. Filipiak; Thomas L. Saunders; Robert C. Dysko; Kenji Kohno; Lawrence B. Holzman; Roger C. Wiggins

Glomerular injury and proteinuria in diabetes (types 1 and 2) and IgA nephropathy is related to the degree of podocyte depletion in humans. For determining the causal relationship between podocyte depletion and glomerulosclerosis, a transgenic rat strain in which the human diphtheria toxin receptor is specifically expressed in podocytes was developed. The rodent homologue does not act as a diphtheria toxin (DT) receptor, thereby making rodents resistant to DT. Injection of DT into transgenic rats but not wild-type rats resulted in dose-dependent podocyte depletion from glomeruli. Three stages of glomerular injury caused by podocyte depletion were identified: Stage 1, 0 to 20% depletion showed mesangial expansion, transient proteinuria and normal renal function; stage 2, 21 to 40% depletion showed mesangial expansion, capsular adhesions (synechiae), focal segmental glomerulosclerosis, mild persistent proteinuria, and normal renal function; and stage 3, >40% podocyte depletion showed segmental to global glomerulosclerosis with sustained high-grade proteinuria and reduced renal function. These pathophysiologic consequences of podocyte depletion parallel similar degrees of podocyte depletion, glomerulosclerosis, and proteinuria seen in diabetic glomerulosclerosis. This model system provides strong support for the concept that podocyte depletion could be a major mechanism driving glomerulosclerosis and progressive loss of renal function in human glomerular diseases.


Journal of Biological Chemistry | 1997

Molecular Cloning and Characterization of Human Podocalyxin-like Protein ORTHOLOGOUS RELATIONSHIP TO RABBIT PCLP1 AND RAT PODOCALYXIN

David B. Kershaw; Stephen G. Beck; Bryan L. Wharram; Jocelyn E. Wiggins; Meera Goyal; Peedikayil E. Thomas; Roger C. Wiggins

Human renal cortex and heart cDNA libraries were screened for a human homolog of rabbit PCLP1 using the rabbit PCLP1 cDNA as a probe. Clones spanning 5869 base pairs with an open reading frame coding for a 528-amino acid peptide were obtained. The putative peptide contains a potential signal peptide and a single membrane-spanning region. The extracellular domain contains multiple potential sites for N- and O-linked glycosylation and 4 cysteines for potential disulfide bonding similar to rabbit PCLP1. On Northern blot a major transcript is seen at 5.9 kilobases. Antibodies to this protein show a doublet at 160/165 kDa on Western blots of human glomerular extract and a pattern of intense glomerular staining and vascular endothelial staining on immunofluorescence of human kidney sections. Comparison of the rabbit and human peptide sequences shows a high degree of identity in the transmembrane and intracellular domains (96%) with a lower degree of identity in the extracellular domain (36%). An antibody to the intracellular domain reacted across species (human, rabbit, and rat) and recognized both rabbit PCLP1 and rat podocalyxin. An interspecies Southern blot probed with a cDNA coding for the intracellular domain showed strong hybridization to all vertebrates tested in a pattern suggesting a single copy gene. We conclude that this cDNA and putative peptide represent the human homolog of rabbit PCLP1 and rat podocalyxin.


Journal of Clinical Investigation | 2000

Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate

Bryan L. Wharram; Meera Goyal; Patrick J. Gillespie; Jocelyn E. Wiggins; David B. Kershaw; Lawrence B. Holzman; Robert C. Dysko; Thomas L. Saunders; Linda C. Samuelson; Roger C. Wiggins

Glomerular epithelial protein 1 (GLEPP1) is a receptor tyrosine phosphatase present on the apical cell surface of the glomerular podocyte. The GLEPP1 gene (PTPRO:) was disrupted at an exon coding for the NH(2)-terminal region by gene targeting in embryonic stem cells. Heterozygote mating produced the expected genotypic ratio of 1:2:1, indicating that the Ptpro(-/-) genotype does not lead to embryonic or neonatal lethality. Kidney and glomerular structure was normal at the gross and light microscopic levels. Scanning and transmission electron microscopy showed that Ptpro(-/-) mice had an amoeboid rather than the typical octopoid structure seen in the wild-type mouse podocyte and that there were blunting and widening of the minor (foot) processes in association with altered distribution of the podocyte intermediate cytoskeletal protein vimentin. Reduced filtration surface area in association with these structural changes was confirmed by finding reduced glomerular nephrin content and reduced glomerular filtration rate in Ptpro(-/-) mice. There was no detectable increase in the urine albumin excretion of Ptpro(-/-) mice. After removal of one or more kidneys, Ptpro(-/-) mice had higher blood pressure than did their wild-type littermates. These data support the conclusion that the GLEPP1 (Ptpro) receptor plays a role in regulating the glomerular pressure/filtration rate relationship through an effect on podocyte structure and function.


Kidney International | 2012

Angiotensin II-dependent persistent podocyte loss from destabilized glomeruli causes progression of end stage kidney disease

Akihiro Fukuda; Larysa Wickman; Madhusudan Venkatareddy; Yuji Sato; Mahboob Chowdhury; Su Q. Wang; Kerby Shedden; Robert C. Dysko; Jocelyn E. Wiggins; Roger C. Wiggins

Podocyte depletion is a major mechanism driving glomerulosclerosis. Progression is the process by which progressive glomerulosclerosis leads to end stage kidney disease (ESKD). In order to determine mechanisms contributing to persistent podocyte loss, we used a human diphtheria toxin transgenic rat model. After initial diphtheria toxin-induced podocyte injury (over 30% loss in 4 weeks), glomeruli became destabilized, resulting in continued autonomous podocyte loss causing global podocyte depletion (ESKD) by 13 weeks. This was monitored by urine mRNA analysis and by quantitating podocytes in glomeruli. Similar patterns of podocyte depletion were found in the puromycin aminonucleoside and 5/6 nephrectomy rat models of progressive end-stage disease. Angiotensin II blockade (combined enalapril and losartan) restabilized the glomeruli, and prevented continuous podocyte loss and progression to ESKD. Discontinuing angiotensin II blockade resulted in recurrent glomerular destabilization, podocyte loss, and progression to ESKD. Reduction in blood pressure alone did not reduce proteinuria or prevent podocyte loss from destabilized glomeruli. The protective effect of angiotensin II blockade was entirely accounted for by reduced podocyte loss. Thus, an initiating event resulting in a critical degree of podocyte depletion can destabilize glomeruli and initiate a superimposed angiotensin II-dependent podocyte loss process that accelerates progression resulting in eventual global podocyte depletion and ESKD. These events can be monitored noninvasively in real-time through urine mRNA assays.


Journal of The American Society of Nephrology | 2012

Growth-Dependent Podocyte Failure Causes Glomerulosclerosis

Akihiro Fukuda; Mahboob Chowdhury; Madhusudan Venkatareddy; Su Q. Wang; Ryuzoh Nishizono; Tsukasa Suzuki; Larysa Wickman; Jocelyn E. Wiggins; Timothy Muchayi; Diane C. Fingar; Kerby Shedden; Ken Inoki; Roger C. Wiggins

Podocyte depletion leads to glomerulosclerosis, but whether an impaired capacity of podocytes to respond to hypertrophic stress also causes glomerulosclerosis is unknown. We generated transgenic Fischer 344 rats that express a dominant negative AA-4E-BP1 transgene driven by the podocin promoter; a member of the mammalian target of rapamycin complex 1 (mTORC1) pathway, 4E-BP1 modulates cap-dependent translation, which is a key determinant of a cells hypertrophic response to nutrients and growth factors. AA-4E-BP1 rat podocytes expressed the transgene and had normal kidney histology and protein excretion at 100 g of body weight but developed ESRD by 12 months. Proteinuria and glomerulosclerosis were linearly related to both increasing body weight and transgene dose. Uni-nephrectomy reduced the body weight at which proteinuria first developed by 40%-50%. The initial histologic manifestation of disease was the appearance of bare areas of glomerular basement membrane from the pulling apart of podocyte foot processes, followed by adhesions to the Bowman capsule. Morphometric analysis confirmed the mismatch between glomerular tuft volume and total podocyte volume (number × size) per tuft in relation to weight gain and nephrectomy. Proteinuria and glomerulosclerosis did not develop if dietary calorie restriction prevented weight gain and glomerular enlargement. In summary, failure of podocytes to match glomerular tuft growth in response to growth signaling through the mTORC1 pathway can trigger proteinuria, glomerulosclerosis, and progression to ESRD. Reducing body weight and glomerular growth may be useful adjunctive therapies to slow or prevent progression to ESRD.


Journal of The American Society of Nephrology | 2013

Urine Podocyte mRNAs, Proteinuria, and Progression in Human Glomerular Diseases

Larysa Wickman; Farsad Afshinnia; Su Q. Wang; Yan Yang; Fei Wang; Mahboob Chowdhury; Delia Graham; Jennifer Hawkins; Ryuzoh Nishizono; Marie Tanzer; Jocelyn E. Wiggins; Guillermo A. Escobar; Bradley Rovin; Peter X.-K. Song; Debbie S. Gipson; David B. Kershaw; Roger C. Wiggins

Model systems demonstrate that progression to ESRD is driven by progressive podocyte depletion (the podocyte depletion hypothesis) and can be noninvasively monitored through measurement of urine pellet podocyte mRNAs. To test these concepts in humans, we analyzed urine pellet mRNAs from 358 adult and pediatric kidney clinic patients and 291 controls (n=1143 samples). Compared with controls, urine podocyte mRNAs increased 79-fold (P<0.001) in patients with biopsy-proven glomerular disease and a 50% decrease in kidney function or progression to ESRD. An independent cohort of patients with Alport syndrome had a 23-fold increase in urinary podocyte mRNAs (P<0.001 compared with controls). Urinary podocyte mRNAs increased during active disease but returned to baseline on disease remission. Furthermore, urine podocyte mRNAs increased in all categories of glomerular disease evaluated, but levels ranged from high to normal, consistent with individual patient variability in the risk for progression. In contrast, urine podocyte mRNAs did not increase in polycystic kidney disease. The association between proteinuria and podocyturia varied markedly by glomerular disease type: a high correlation in minimal-change disease and a low correlation in membranous nephropathy. These data support the podocyte depletion hypothesis as the mechanism driving progression in all human glomerular diseases, suggest that urine pellet podocyte mRNAs could be useful for monitoring risk for progression and response to treatment, and provide novel insights into glomerular disease pathophysiology.


Nephrology Dialysis Transplantation | 2012

Urine podocin:nephrin mRNA ratio (PNR) as a podocyte stress biomarker

Akihiro Fukuda; Larysa Wickman; Madhusudan Venkatareddy; Su Q. Wang; Mahboob Chowdhury; Jocelyn E. Wiggins; Kerby Shedden; Roger C. Wiggins

BACKGROUND Proteinuria and/or albuminuria are widely used for noninvasive assessment of kidney diseases. However, proteinuria is a nonspecific marker of diverse forms of kidney injury, physiologic processes and filtration of small proteins of monoclonal and other pathologic processes. The opportunity to develop new glomerular disease biomarkers follows the realization that the degree of podocyte depletion determines the degree of glomerulosclerosis, and if persistent, determines the progression to end-stage kidney disease (ESKD). Podocyte cell lineage-specific mRNAs can be recovered in urine pellets of model systems and in humans. In model systems, progressive glomerular disease is associated with decreased nephrin mRNA steady-state levels compared with podocin mRNA. Thus, the urine podocin:nephrin mRNA ratio (PNR) could serve as a useful progression biomarker. The use of podocyte-specific transcript ratios also circumvents many problems inherent to urine assays. METHODS To test this hypothesis, the human diphtheria toxin receptor (hDTR) rat model of progression was used to evaluate potentially useful urine mRNA biomarkers. We compared histologic progression parameters (glomerulosclerosis score, interstitial fibrosis score and percent of podocyte depletion) with clinical biomarkers [serum creatinine, systolic blood pressure (BP), 24-h urine volume, 24-h urine protein excretion and the urine protein:creatinine ratio(PCR)] and with the novel urine mRNA biomarkers. RESULTS The PNR correlated with histologic outcome as well or better than routine clinical biomarkers and other urine mRNA biomarkers in the model system with high specificity and sensitivity, and a low coefficient of assay variation. CONCLUSIONS We concluded that the PNR, used in combination with proteinuria, will be worth testing for its clinical diagnostic and decision-making utility.


Journal of The American Society of Nephrology | 2006

Antioxidant Ceruloplasmin Is Expressed by Glomerular Parietal Epithelial Cells and Secreted into Urine in Association with Glomerular Aging and High-Calorie Diet

Jocelyn E. Wiggins; Meera Goyal; Bryan L. Wharram; Roger C. Wiggins

Biologic aging is accelerated by high-calorie intake, increased free radical production, and oxidation of key biomolecules. Fischer 344 rats that are maintained on an ad libitum diet develop oxidant injury and age-associated glomerulosclerosis by 24 mo. Calorie restriction prevents both oxidant injury and glomerulosclerosis. Ceruloplasmin (Cp) is a copper-containing ferroxidase that functions as an antioxidant in part by oxidizing toxic ferrous iron to nontoxic ferric iron. Glomerular Cp mRNA and protein expression were measured in ad libitum-fed and calorie-restricted rats at ages 2, 6, 17, and 24 mo. In ad libitum-fed rats, Cp mRNA expression increased six-fold (P < 0.01) and protein expression increased five-fold (P = 0.01) between 2 and 24 mo of age. In calorie-restricted rats, Cp mRNA expression increased three-fold (P < 0.01) and protein expression increased 1.6-fold (NS) between 2 and 24 mo of age. Both the cell-associated alternately spliced variant and secreted variants of Cp were expressed. Immunofluorescent analysis showed that Cp was expressed by the parietal epithelial cells that line the inner aspect of Bowmans capsule in the glomerulus. Cp also was present in urine, particularly of old ad libitum-fed rats with high tissue Cp expression. Cp expression by Bowmans capsule epithelial cells therefore occurred in direct proportion to known levels of oxidant activity (older age and high-calorie diet) and is secreted into the urine. It is suggested that Cp expression at this site may be part of the repertoire of the glomerular parietal epithelial cell to protect the glomerular podocytes and the downstream nephron from toxic effects of filtered molecules, including ferrous iron.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2012

Aging in the Glomerulus

Jocelyn E. Wiggins

Kidney function declines with age in the majority of the population. Although very few older people progress to end stage, the consequences of doing so are burdensome for the patient and very expensive for the society. Although some of the observed decline is likely due to changes in the vasculature, much is associated with the development of age-associated glomerulosclerosis. This article will review the well-established structural and functional changes in the glomerulus with age. The role of calorie restriction in modifying age-related pathology will be discussed. The importance of the podocyte as a critical cell in the aging process is considered using animal models and human biopsy material. Newer data on changes in gene expression driven by nuclear factor kappa beta (NFkB) and possible changes in biology in the glomerulus are discussed. The relationship between pathways involved in aging and the decline in kidney function is reviewed. There is speculation on the significance of these changes in relation to normal and pathological aging.


Seminars in Nephrology | 2009

Podocytes and Glomerular Function with Aging

Jocelyn E. Wiggins

Kidney function declines with age in association with the development of age-associated glomerulosclerosis. The well-established structural and functional changes with age are reviewed briefly. The modification of aging pathology by calorie restriction is discussed. The role of the podocyte as a critical cell in the aging process is considered, using animal models and human biopsy material. Newer data on changes in gene expression and possible changes in biology in the glomerulus are discussed. There is speculation on the implications of this change in biology for human disease and progression.

Collaboration


Dive into the Jocelyn E. Wiggins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meera Goyal

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Su Q. Wang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge