Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jocelyn K. C. Rose is active.

Publication


Featured researches published by Jocelyn K. C. Rose.


Trends in Plant Science | 1999

Cooperative disassembly of the cellulose–xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening

Jocelyn K. C. Rose; Alan B. Bennett

Modification of the plant primary cell wall is required for both cell expansion and for developmental events, such as fruit softening, where cell size remains static but where wall loosening is an important feature. Recent studies suggest that the cellulose-xyloglucan network is targeted by similar enzymatic activities in both expanding cells and ripening fruit but that unique isoforms are expressed in each process. Disassembly of this structural network probably involves the concerted and synergistic action of suites of these enzyme families, where one family of cell wall modifying proteins might mediate the activity of another, providing the basis for orchestrating ordered cell wall restructuring and turnover.


Plant Physiology | 2013

The Formation and Function of Plant Cuticles

Trevor H. Yeats; Jocelyn K. C. Rose

Recent progress in the biochemistry and molecular biology of cuticle synthesis and function highlights major questions that will drive future research in this field. The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field.


Nature Genetics | 2014

Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species

Seungill Kim; Minkyu Park; Seon-In Yeom; Yong Min Kim; Je Min Lee; Hyun Ah Lee; Eunyoung Seo; Jae Young Choi; Kyeongchae Cheong; Ki-Tae Kim; Kyongyong Jung; Gir Won Lee; Sang Keun Oh; Chungyun Bae; Saet Byul Kim; Hye Young Lee; Shin Young Kim; Myung Shin Kim; Byoung Cheorl Kang; Yeong Deuk Jo; Hee Bum Yang; Hee Jin Jeong; Won-Hee Kang; Jin Kyung Kwon; Chanseok Shin; Jae Yun Lim; June Hyun Park; Jin Hoe Huh; June Sik Kim; Byung-Dong Kim

Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.


Nature Protocols | 2006

Sample extraction techniques for enhanced proteomic analysis of plant tissues

Tal Isaacson; Cynthia M. B. Damasceno; Ramu S. Saravanan; Yonghua He; Carmen Catalá; Montserrat Saladié; Jocelyn K. C. Rose

Major improvements in proteomic techniques in recent years have led to an increase in their application in all biological fields, including plant sciences. For all proteomic approaches, protein extraction and sample preparation are of utmost importance for optimal results; however, extraction of proteins from plant tissues represents a great challenge. Plant tissues usually contain relatively low amounts of proteins and high concentrations of proteases and compounds that potentially can limit tissue disintegration and interfere with subsequent protein separation and identification. An effective protein extraction protocol must also be adaptable to the great variation in the sets of secondary metabolites and potentially contaminating compounds that occurs between tissues (e.g., leaves, roots, fruit, seeds and stems) and between species. Here we present two basic protein extraction protocols that have successfully been used with diverse plant tissues, including recalcitrant tissues. The first method is based on phenol extraction coupled with ammonium acetate precipitation, and the second is based on trichloroacetic acid (TCA) precipitation. Both extraction protocols can be completed within 2 d.


Plant Physiology | 2007

A Reevaluation of the Key Factors That Influence Tomato Fruit Softening and Integrity

Montserrat Saladié; Antonio J. Matas; Tal Isaacson; Matthew A. Jenks; S. Mark Goodwin; Karl J. Niklas; Ren Xiaolin; John M. Labavitch; Kenneth A. Shackel; Alisdair R. Fernie; Anna Lytovchenko; Malcolm A. O'Neill; Christopher B. Watkins; Jocelyn K. C. Rose

The softening of fleshy fruits, such as tomato (Solanum lycopersicum), during ripening is generally reported to result principally from disassembly of the primary cell wall and middle lamella. However, unsuccessful attempts to prolong fruit firmness by suppressing the expression of a range of wall-modifying proteins in transgenic tomato fruits do not support such a simple model. ‘Delayed Fruit Deterioration’ (DFD) is a previously unreported tomato cultivar that provides a unique opportunity to assess the contribution of wall metabolism to fruit firmness, since DFD fruits exhibit minimal softening but undergo otherwise normal ripening, unlike all known nonsoftening tomato mutants reported to date. Wall disassembly, reduced intercellular adhesion, and the expression of genes associated with wall degradation were similar in DFD fruit and those of the normally softening ‘Ailsa Craig’. However, ripening DFD fruit showed minimal transpirational water loss and substantially elevated cellular turgor. This allowed an evaluation of the relative contribution and timing of wall disassembly and water loss to fruit softening, which suggested that both processes have a critical influence. Biochemical and biomechanical analyses identified several unusual features of DFD cuticles and the data indicate that, as with wall metabolism, changes in cuticle composition and architecture are an integral and regulated part of the ripening program. A model is proposed in which the cuticle affects the softening of intact tomato fruit both directly, by providing a physical support, and indirectly, by regulating water status.


The Plant Cell | 2009

Fleshy Fruit Expansion and Ripening Are Regulated by the Tomato SHATTERPROOF Gene TAGL1

Julia Vrebalov; Irvin L. Pan; Antonio Javier Matas Arroyo; Ryan McQuinn; Mi-Young Chung; Mervin Poole; Jocelyn K. C. Rose; Graham B. Seymour; Silvana Grandillo; James J. Giovannoni; Vivian F. Irish

The maturation and ripening of fleshy fruits is a developmental program that synchronizes seed maturation with metabolism, rendering fruit tissues desirable to seed dispersing organisms. Through RNA interference repression, we show that Tomato AGAMOUS-LIKE1 (TAGL1), the tomato (Solanum lycopersicum) ortholog of the duplicated SHATTERPROOF (SHP) MADS box genes of Arabidopsis thaliana, is necessary for fruit ripening. Tomato plants with reduced TAGL1 mRNA produced yellow-orange fruit with reduced carotenoids and thin pericarps. These fruit are also decreased in ethylene, indicating a comprehensive inhibition of maturation mediated through reduced ACC Synthase 2 expression. Furthermore, ectopic expression of TAGL1 in tomato resulted in expansion of sepals and accumulation of lycopene, supporting the role of TAGL1 in ripening. In Arabidopsis, the duplicate SHP1 and SHP2 MADS box genes regulate the development of separation layers essential for pod shatter. Expression of TAGL1 in Arabidopsis failed to completely rescue the shp1 shp2 mutant phenotypes, indicating that TAGL1 has evolved distinct molecular functions compared with its Arabidopsis counterparts. These analyses demonstrate that TAGL1 plays an important role in regulating both fleshy fruit expansion and the ripening process that together are necessary to promote seed dispersal of fleshy fruit. From this broad perspective, SHP1/2 and TAGL1, while distinct in molecular function, regulate similar activities via their necessity for seed dispersal in Arabidopsis and tomato, respectively.


Plant Signaling & Behavior | 2012

The Charophycean green algae as model systems to study plant cell walls and other evolutionary adaptations that gave rise to land plants.

Iben Sørensen; Jocelyn K. C. Rose; Jeff J. Doyle; David S. Domozych; William G. T. Willats

The Charophycean green algae (CGA) occupy a key phylogenetic position as the evolutionary grade that includes the sister group of the land plants (embryophytes), and so provide potentially valuable experimental systems to study the development and evolution of traits that were necessary for terrestrial colonization. The nature and molecular bases of such traits are still being determined, but one critical adaptation is thought to have been the evolution of a complex cell wall. Very little is known about the identity, origins and diversity of the biosynthetic machinery producing the major suites of structural polymers (i. e., cell wall polysaccharides and associated molecules) that must have been in place for land colonization. However, it has been suggested that the success of the earliest land plants was partly based on the frequency of gene duplication, and possibly whole genome duplications, during times of radical habitat changes. Orders of the CGA span early diverging taxa retaining more ancestral characters, through complex multicellular organisms with morphological characteristics resembling those of land plants. Examination of gene diversity and evolution within the CGA could help reveal when and how the molecular pathways required for synthesis of key structural polymers in land plants arose.


Plant Physiology | 2011

Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (nor, rin) and Ethylene Receptor (Nr) Mutants Reveals Novel Regulatory Interactions

Sonia Osorio; Rob Alba; Cynthia M. B. Damasceno; Gloria Lopez-Casado; Marc Lohse; María Inés Zanor; Takayuki Tohge; Jocelyn K. C. Rose; Zhangjun Fei; James J. Giovannoni; Alisdair R. Fernie

Tomato (Solanum lycopersicum) is an established model to study fleshy fruit development and ripening. Tomato ripening is regulated independently and cooperatively by ethylene and transcription factors, including nonripening (NOR) and ripening-inhibitor (RIN). Mutations of NOR, RIN, and the ethylene receptor Never-ripe (Nr), which block ethylene perception and inhibit ripening, have proven to be great tools for advancing our understanding of the developmental programs regulating ripening. In this study, we present systems analysis of nor, rin, and Nr at the transcriptomic, proteomic, and metabolomic levels during development and ripening. Metabolic profiling marked shifts in the abundance of metabolites of primary metabolism, which lead to decreases in metabolic activity during ripening. When combined with transcriptomic and proteomic data, several aspects of the regulation of metabolism during ripening were revealed. First, correlations between the expression levels of a transcript and the abundance of its corresponding protein were infrequently observed during early ripening, suggesting that posttranscriptional regulatory mechanisms play an important role in these stages; however, this correlation was much greater in later stages. Second, we observed very strong correlation between ripening-associated transcripts and specific metabolite groups, such as organic acids, sugars, and cell wall-related metabolites, underlining the importance of these metabolic pathways during fruit ripening. These results further revealed multiple ethylene-associated events during tomato ripening, providing new insights into the molecular biology of ethylene-mediated ripening regulatory networks.


The Plant Cell | 2009

Arabidopsis LTPG Is a Glycosylphosphatidylinositol-Anchored Lipid Transfer Protein Required for Export of Lipids to the Plant Surface

Allan DeBono; Trevor H. Yeats; Jocelyn K. C. Rose; David Bird; Reinhard Jetter; Ljerka Kunst; Lacey Samuels

Plant epidermal cells dedicate more than half of their lipid metabolism to the synthesis of cuticular lipids, which seal and protect the plant shoot. The cuticle is made up of a cutin polymer and waxes, diverse hydrophobic compounds including very-long-chain fatty acids and their derivatives. How such hydrophobic compounds are exported to the cuticle, especially through the hydrophilic plant cell wall, is not known. By performing a reverse genetic screen, we have identified LTPG, a glycosylphosphatidylinositol-anchored lipid transfer protein that is highly expressed in the epidermis during cuticle biosynthesis in Arabidopsis thaliana inflorescence stems. Mutant plant lines with decreased LTPG expression had reduced wax load on the stem surface, showing that LTPG is involved either directly or indirectly in cuticular lipid deposition. In vitro 2-p-toluidinonaphthalene-6-sulfonate assays showed that recombinant LTPG has the capacity to bind to this lipid probe. LTPG was primarily localized to the plasma membrane on all faces of stem epidermal cells in the growing regions of inflorescence stems where wax is actively secreted. These data suggest that LTPG may function as a component of the cuticular lipid export machinery.


Protein Science | 2008

The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs).

Trevor H. Yeats; Jocelyn K. C. Rose

Plant lipid‐transfer proteins (LTPs) are abundant, small, lipid binding proteins that are capable of exchanging lipids between membranes in vitro. Despite their name, a role in intracellular lipid transport is considered unlikely, based on their extracellular localization. A number of other biological roles, including antimicrobial defense, signaling, and cell wall loosening, have been proposed, but conclusive evidence is generally lacking, and these functions are not well correlated with in vitro activity or structure. A survey of sequenced plant genomes suggests that the two biochemically characterized families of LTPs are phylogenetically restricted to seed plants and are present as substantial gene families. This review aims to summarize the current understanding of LTP biochemistry, as well as the evidence supporting the proposed in vivo roles of these proteins within the emerging post‐genomic framework.

Collaboration


Dive into the Jocelyn K. C. Rose's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhangjun Fei

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James J. Giovannoni

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge