Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jocelyn M. Choo is active.

Publication


Featured researches published by Jocelyn M. Choo.


Scientific Reports | 2015

Sample storage conditions significantly influence faecal microbiome profiles

Jocelyn M. Choo; Lex Ex Leong; Geraint B. Rogers

Sequencing-based studies of the human faecal microbiota are increasingly common. Appropriate storage of sample material is essential to avoid the introduction of post-collection bias in microbial community composition. Rapid freezing to −80 °C is commonly considered to be best-practice. However, this is not feasible in many studies, particularly those involving sample collection in participants’ homes. We determined the extent to which a range of stabilisation and storage strategies maintained the composition of faecal microbial community structure relative to freezing to −80 °C. Refrigeration at 4 °C, storage at ambient temperature, and the use of several common preservative buffers (RNAlater, OMNIgene.GUT, Tris-EDTA) were assessed relative to freezing. Following 72 hours of storage, faecal microbial composition was assessed by 16 S rRNA amplicon sequencing. Refrigeration was associated with no significant alteration in faecal microbiota diversity or composition. However, samples stored using other conditions showed substantial divergence compared to −80 °C control samples. Aside from refrigeration, the use of OMNIgene.GUT resulted in the least alteration, while the greatest change was seen in samples stored in Tris-EDTA buffer. The commercially available OMNIgene.GUT kit may provide an important alternative where refrigeration and cold chain transportation is not available.


Mbio | 2015

Deriving accurate microbiota profiles from human samples with low bacterial content through post-sequencing processing of Illumina MiSeq data

Jake Jervis-Bardy; Lex E.X. Leong; Shashikanth Marri; Renee J. Smith; Jocelyn M. Choo; Heidi C. Smith-Vaughan; Elizabeth Nosworthy; Peter S. Morris; Stephen O’Leary; Geraint B. Rogers; Robyn L. Marsh

BackgroundThe rapid expansion of 16S rRNA gene sequencing in challenging clinical contexts has resulted in a growing body of literature of variable quality. To a large extent, this is due to a failure to address spurious signal that is characteristic of samples with low levels of bacteria and high levels of non-bacterial DNA. We have developed a workflow based on the paired-end read Illumina MiSeq-based approach, which enables significant improvement in data quality, post-sequencing. We demonstrate the efficacy of this methodology through its application to paediatric upper-respiratory samples from several anatomical sites.ResultsA workflow for processing sequence data was developed based on commonly available tools. Data generated from different sample types showed a marked variation in levels of non-bacterial signal and ‘contaminant’ bacterial reads. Significant differences in the ability of reference databases to accurately assign identity to operational taxonomic units (OTU) were observed. Three OTU-picking strategies were trialled as follows: de novo, open-reference and closed-reference, with open-reference performing substantially better. Relative abundance of OTUs identified as potential reagent contamination showed a strong inverse correlation with amplicon concentration allowing their objective removal. The removal of the spurious signal showed the greatest improvement in sample types typically containing low levels of bacteria and high levels of human DNA. A substantial impact of pre-filtering data and spurious signal removal was demonstrated by principal coordinate and co-occurrence analysis. For example, analysis of taxon co-occurrence in adenoid swab and middle ear fluid samples indicated that failure to remove the spurious signal resulted in the inclusion of six out of eleven bacterial genera that accounted for 80% of similarity between the sample types.ConclusionsThe application of the presented workflow to a set of challenging clinical samples demonstrates its utility in removing the spurious signal from the dataset, allowing clinical insight to be derived from what would otherwise be highly misleading output. While other approaches could potentially achieve similar improvements, the methodology employed here represents an accessible means to exclude the signal from contamination and other artefacts.


Infection and Immunity | 2011

Regulation of Virulence by the RevR Response Regulator in Clostridium perfringens

Thomas J. Hiscox; Anjana Chakravorty; Jocelyn M. Choo; Kaori Ohtani; Tohru Shimizu; Jackie K. Cheung; Julian I. Rood

ABSTRACT Clostridium perfringens causes clostridial myonecrosis or gas gangrene and produces several extracellular hydrolytic enzymes and toxins, many of which are regulated by the VirSR signal transduction system. The revR gene encodes a putative orphan response regulator that has similarity to the YycF (WalR), VicR, PhoB, and PhoP proteins from other Gram-positive bacteria. RevR appears to be a classical response regulator, with an N-terminal receiver domain and a C-terminal domain with a putative winged helix-turn-helix DNA binding region. To determine its functional role, a revR mutant was constructed by allelic exchange and compared to the wild type by microarray analysis. The results showed that more than 100 genes were differentially expressed in the mutant, including several genes involved in cell wall metabolism. The revR mutant had an altered cellular morphology; unlike the short rods observed with the wild type, the mutant cells formed long filaments. These changes were reversed upon complementation with a plasmid that carried the wild-type revR gene. Several genes encoding extracellular hydrolytic enzymes (sialidase, hyaluronidase, and α-clostripain) were differentially expressed in the revR mutant. Quantitative enzyme assays confirmed that these changes led to altered enzyme activity and that complementation restored the wild-type phenotype. Most importantly, the revR mutant was attenuated for virulence in the mouse myonecrosis model compared to the wild type and the complemented strains. These results provide evidence that RevR regulates virulence in C. perfringens; it is the first response regulator other than VirR to be shown to regulate virulence in this important pathogen.


The Journal of Allergy and Clinical Immunology | 2018

Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology

Steven L. Taylor; Lex E.X. Leong; Jocelyn M. Choo; Steve Wesselingh; Ian A. Yang; John W. Upham; Paul N. Reynolds; Sandra Hodge; Alan James; Christine R. Jenkins; Matthew J. Peters; Melissa Baraket; Guy B. Marks; Peter G. Gibson; Jodie L. Simpson; Geraint B. Rogers

&NA; Figure. No caption available. Background: Asthma pathophysiology and treatment responsiveness are predicted by inflammatory phenotype. However, the relationship between airway microbiology and asthma phenotype is poorly understood. Objective: We aimed to characterize the airway microbiota in patients with symptomatic stable asthma and relate composition to airway inflammatory phenotype and other phenotypic characteristics. Methods: The microbial composition of induced sputum specimens collected from adult patients screened for a multicenter randomized controlled trial was determined by using 16S rRNA gene sequencing. Inflammatory phenotypes were defined by sputum neutrophil and eosinophil cell proportions. Microbiota were defined by using &agr;‐ and &bgr;‐diversity measures, and interphenotype differences were identified by using similarity of percentages, network analysis, and taxon fold change. Phenotypic predictors of airway microbiology were identified by using multivariate linear regression. Results: Microbiota composition was determined in 167 participants and classified as eosinophilic (n = 84), neutrophilic (n = 14), paucigranulocytic (n = 60), or mixed neutrophilic‐eosinophilic (n = 9) asthma phenotypes. Airway microbiology was significantly less diverse (P = .022) and more dissimilar (P = .005) in neutrophilic compared with eosinophilic participants. Sputum neutrophil proportions, but not eosinophil proportions, correlated significantly with these diversity measures (&agr;‐diversity: Spearman r = −0.374, P < .001; &bgr;‐diversity: r = 0.238, P = .002). Interphenotype differences were characterized by a greater frequency of pathogenic taxa at high relative abundance and reduced Streptococcus, Gemella, and Porphyromonas taxa relative abundance in patients with neutrophilic asthma. Multivariate regression confirmed that sputum neutrophil proportion was the strongest predictor of microbiota composition. Conclusions: Neutrophilic asthma is associated with airway microbiology that is significantly different from that seen in patients with other inflammatory phenotypes, particularly eosinophilic asthma. Differences in microbiota composition might influence the response to antimicrobial and steroid therapies and the risk of lung infection.


PLOS ONE | 2013

Regulation of Sialidase Production in Clostridium perfringens by the Orphan Sensor Histidine Kinase ReeS

Thomas J. Hiscox; Paul F. Harrison; Anjana Chakravorty; Jocelyn M. Choo; Kaori Ohtani; Tohru Shimizu; Jackie K. Cheung; Julian I. Rood

Clostridium perfringens is ubiquitous in nature and is often found as a commensal of the human and animal gastrointestinal tract. It is the primary etiological agent of clostridial myonecrosis, or gas gangrene, a serious infection that results in extensive tissue necrosis due to the action of one or more potent extracellular toxins. α-toxin and perfringolysin O are the major extracellular toxins involved in the pathogenesis of gas gangrene, but histotoxic strains of C. perfringens, such as strain 13, also produce many degradative enzymes such as collagenases, hyaluronidases, sialidases and the cysteine protease, α-clostripain. The production of many of these toxins is regulated either directly or indirectly by the global VirSR two-component signal transduction system. By isolating a chromosomal mutant and carrying out microarray analysis we have identified an orphan sensor histidine kinase, which we have named ReeS (regulator of extracellular enzymes sensor). Expression of the sialidase genes nanI and nanJ was down-regulated in a reeS mutant. Since complementation with the wild-type reeS gene restored nanI and nanJ expression to wild-type levels, as shown by quantitative reverse transcription-PCR and sialidase assays we concluded that ReeS positively regulates the expression of these sialidase genes. However, mutation of the reeS gene had no significant effect on virulence in the mouse myonecrosis model. Sialidase production in C. perfringens has been previously shown to be regulated by both the VirSR system and RevR. In this report, we have analyzed a previously unknown sensor histidine kinase, ReeS, and have shown that it also is involved in controlling the expression of sialidase genes, adding further complexity to the regulatory network that controls sialidase production in C. perfringens.


PLOS ONE | 2011

The cysteine protease α-clostripain is not essential for the pathogenesis of Clostridium perfringens-mediated myonecrosis.

Anjana Chakravorty; Milena M. Awad; Thomas J. Hiscox; Jackie K. Cheung; Glen P. Carter; Jocelyn M. Choo; Dena Lyras; Julian I. Rood

Clostridium perfringens is the causative agent of clostridial myonecrosis or gas gangrene and produces many different extracellular toxins and enzymes, including the cysteine protease α-clostripain. Mutation of the α-clostripain structural gene, ccp, alters the turnover of secreted extracellular proteins in C. perfringens, but the role of α-clostripain in disease pathogenesis is not known. We insertionally inactivated the ccp gene C. perfringens strain 13 using TargeTron technology, constructing a strain that was no longer proteolytic on skim milk agar. Quantitative protease assays confirmed the absence of extracellular protease activity, which was restored by complementation with the wild-type ccp gene. The role of α-clostripain in virulence was assessed by analysing the isogenic wild-type, mutant and complemented strains in a mouse myonecrosis model. The results showed that although α-clostripain was the major extracellular protease, mutation of the ccp gene did not alter either the progression or the development of disease. These results do not rule out the possibility that this extracellular enzyme may still have a role in the early stages of the disease process.


mSphere | 2017

Divergent Relationships between Fecal Microbiota and Metabolome following Distinct Antibiotic-Induced Disruptions

Jocelyn M. Choo; Tokuwa Kanno; Nur Masirah M. Zain; Lex E.X. Leong; Guy C.J. Abell; Julie Keeble; Kenneth D. Bruce; A. James Mason; Geraint B. Rogers

Despite the fundamental importance of antibiotic therapies to human health, their functional impact on the intestinal microbiome and its subsequent ability to recover are poorly understood. Much research in this area has focused on changes in microbiota composition, despite the interdependency and overlapping functions of many members of the microbial community. These relationships make prediction of the functional impact of microbiota-level changes difficult, while analyses based on the metabolome alone provide relatively little insight into the taxon-level changes that underpin changes in metabolite levels. Here, we used combined microbiota and metabolome profiling to characterize changes associated with clinically important antibiotic combinations with distinct effects on the gut. Correlation analysis of changes in the metabolome and microbiota indicate that a combined approach will be essential for a mechanistic understanding of the functional impact of distinct antibiotic classes. ABSTRACT The intestinal microbiome plays an essential role in regulating many aspects of host physiology, and its disruption through antibiotic exposure has been implicated in the development of a range of serious pathologies. The complex metabolic relationships that exist between members of the intestinal microbiota and the potential redundancy in functional pathways mean that an integrative analysis of changes in both structure and function are needed to understand the impact of antibiotic exposure. We used a combination of next-generation sequencing and nuclear magnetic resonance (NMR) metabolomics to characterize the effects of two clinically important antibiotic treatments, ciprofloxacin and vancomycin-imipenem, on the intestinal microbiomes of female C57BL/6 mice. This assessment was performed longitudinally and encompassed both antibiotic challenge and subsequent microbiome reestablishment. Both antibiotic treatments significantly altered the microbiota and metabolite compositions of fecal pellets during challenge and recovery. Spearman’s correlation analysis of microbiota and NMR data revealed that, while some metabolites could be correlated with individual operational taxonomic units (OTUs), frequently multiple OTUs were associated with a significant change in a given metabolite. Furthermore, one metabolite, arginine, can be associated with increases/decreases in different sets of OTUs under differing conditions. Taken together, these findings indicate that reliance on shifts in one data set alone will generate an incomplete picture of the functional effect of antibiotic intervention. A full mechanistic understanding will require knowledge of the baseline microbiota composition, combined with both a comparison and an integration of microbiota, metabolomics, and phenotypic data. IMPORTANCE Despite the fundamental importance of antibiotic therapies to human health, their functional impact on the intestinal microbiome and its subsequent ability to recover are poorly understood. Much research in this area has focused on changes in microbiota composition, despite the interdependency and overlapping functions of many members of the microbial community. These relationships make prediction of the functional impact of microbiota-level changes difficult, while analyses based on the metabolome alone provide relatively little insight into the taxon-level changes that underpin changes in metabolite levels. Here, we used combined microbiota and metabolome profiling to characterize changes associated with clinically important antibiotic combinations with distinct effects on the gut. Correlation analysis of changes in the metabolome and microbiota indicate that a combined approach will be essential for a mechanistic understanding of the functional impact of distinct antibiotic classes.


Journal of Cystic Fibrosis | 2018

Antibiotic exposure and interpersonal variance mask the effect of ivacaftor on respiratory microbiota composition

Anton Y. Peleg; Jocelyn M. Choo; Katherine M. Langan; D. Edgeworth; D. Keating; John Wilson; Geraint B. Rogers; Tom Kotsimbos

BACKGROUND G551D is a class III mutation of the cystic fibrosis transmembrane regulator (CFTR) that results in impaired chloride channel function in cystic fibrosis (CF). Ivacaftor, a CFTR-potentiating agent improves sweat chloride, weight, lung function, and pulmonary exacerbation rate in CF patients with G551D mutations, but its effect on the airway microbiome remains poorly characterised. METHODS Twenty CF patients with at least one G551D mutation from a single centre were recruited to a 4month double-blind, placebo-controlled, crossover study of ivacaftor with 28days of active treatment. Sputum microbiota composition was assessed by 16S rRNA gene amplicon sequencing and quantitative PCR at five key time points, along with regular clinical review, respiratory function assessment, and peripheral blood testing. RESULTS No significant difference in microbiota composition was observed in subjects following ivacaftor treatment or placebo (PERMANOVA P=0.95, square root ECV=-4.94, 9479 permutations). Microbiota composition variance was significantly greater between subjects, than within subjects over time (P<0.0001, Mann Whitney U test), and an additional within-patient paired assessment of microbiota similarity was therefore performed. Again, change in microbiota composition was not significantly greater during treatment with ivacaftor compared to placebo (Wilcoxon test, P=0.51). A significant change in microbiota composition was however associated with any change in antibiotic exposure, regardless of whether ivacaftor or placebo was administered (P=0.006). In a small, subgroup analysis of subjects whose antibiotic exposure did not change within the study period, a significant reduction in total bacterial load was observed during treatment with ivacaftor (P=0.004, two-tailed paired Students t-test). CONCLUSIONS The short-term impact of ivacaftor therapy on sputum microbiota composition in patients with G551D mutations are modest compared to those resulting from antibiotic exposure, and may be masked by changes in antibiotic treatment regimen.


The Journal of Infectious Diseases | 2014

Opioid Analgesics Stop the Development of Clostridial Gas Gangrene

Anjana Chakravorty; Milena M. Awad; Thomas J. Hiscox; Jackie K. Cheung; Jocelyn M. Choo; Dena Lyras; Julian I. Rood

Gas gangrene is a potentially fatal disease that is primarily caused by the ubiquitous, anaerobic bacteria Clostridium perfringens and Clostridium septicum. Treatment is limited to antibiotic therapy, debridement of the infected tissue, and, in severe cases, amputation. The need for new treatment approaches is compelling. Opioid-based analgesics such as buprenorphine and morphine also have immunomodulatory properties, usually leading to faster disease progression. However, here we show that mice pretreated with buprenorphine and morphine do not die from clostridial myonecrosis. Treatment with buprenorphine after the onset of infection also arrested disease development. Protection against myonecrotic disease was specific to C. perfringens-mediated myonecrosis; buprenorphine did not protect against disease caused by C. septicum infection even though infections due to both species are very similar. These data provide the first evidence of a protective role for opioids during infection and suggest that new therapeutic strategies may be possible for the treatment of C. perfringens-mediated myonecrosis.


mSphere | 2018

Impact of Long-Term Erythromycin Therapy on the Oropharyngeal Microbiome and Resistance Gene Reservoir in Non-Cystic Fibrosis Bronchiectasis

Jocelyn M. Choo; Guy C.J. Abell; Rachel Thomson; Lucy Morgan; Grant W. Waterer; David L. Gordon; Steven L. Taylor; Lex E.X. Leong; Steven L. Wesselingh; Lucy D. Burr; Geraint B. Rogers

Recent demonstrations that long-term macrolide therapy can prevent exacerbations in chronic airways diseases have led to a dramatic increase in their use. However, little is known about the wider, potentially adverse impacts of these treatments. Substantial disruption of the upper airway commensal microbiota might reduce its contribution to host defense and local immune regulation, while increases in macrolide resistance carriage would represent a serious public health concern. Using samples from a randomized controlled trial, we show that low-dose erythromycin given over 48 weeks influences the composition of the oropharyngeal commensal microbiota. We report that macrolide therapy is associated with significant changes in the relative abundances of members of the Actinomyces genus and with significant increases in the carriage of transmissible macrolide resistance. Determining the clinical significance of these changes, relative to treatment benefit, now represents a research priority. ABSTRACT Long-term macrolide therapy reduces rates of pulmonary exacerbation in bronchiectasis. However, little is known about the potential for macrolide therapy to alter the composition and function of the oropharyngeal commensal microbiota or to increase the carriage of transmissible antimicrobial resistance. We assessed the effect of long-term erythromycin on oropharyngeal microbiota composition and the carriage of transmissible macrolide resistance genes in 84 adults with bronchiectasis, enrolled in the Bronchiectasis and Low-dose Erythromycin Study (BLESS) 48-week placebo-controlled trial of twice-daily erythromycin ethylsuccinate (400 mg). Oropharyngeal microbiota composition and macrolide resistance gene carriage were determined by 16S rRNA gene amplicon sequencing and quantitative PCR, respectively. Long-term erythromycin treatment was associated with a significant increase in the relative abundance of oropharyngeal Haemophilus parainfluenzae (P = 0.041) and with significant decreases in the relative abundances of Streptococcus pseudopneumoniae (P = 0.024) and Actinomyces odontolyticus (P = 0.027). Validation of the sequencing results by quantitative PCR confirmed a significant decrease in the abundance of Actinomyces spp. (P = 0.046). Erythromycin treatment did not result in a significant increase in the number of subjects who carried erm(A), erm(B), erm(C), erm(F), mef(A/E), and msrA macrolide resistance genes. However, the abundance of erm(B) and mef(A/E) gene copies within carriers who had received erythromycin increased significantly (P < 0.05). Our findings indicate that changes in oropharyngeal microbiota composition resulting from long-term erythromycin treatment are modest and are limited to a discrete group of taxa. Associated increases in levels of transmissible antibiotic resistance genes within the oropharyngeal microbiota highlight the potential for this microbial system to act as a reservoir for resistance. IMPORTANCE Recent demonstrations that long-term macrolide therapy can prevent exacerbations in chronic airways diseases have led to a dramatic increase in their use. However, little is known about the wider, potentially adverse impacts of these treatments. Substantial disruption of the upper airway commensal microbiota might reduce its contribution to host defense and local immune regulation, while increases in macrolide resistance carriage would represent a serious public health concern. Using samples from a randomized controlled trial, we show that low-dose erythromycin given over 48 weeks influences the composition of the oropharyngeal commensal microbiota. We report that macrolide therapy is associated with significant changes in the relative abundances of members of the Actinomyces genus and with significant increases in the carriage of transmissible macrolide resistance. Determining the clinical significance of these changes, relative to treatment benefit, now represents a research priority.

Collaboration


Dive into the Jocelyn M. Choo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy C.J. Abell

CSIRO Marine and Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel Thomson

Greenslopes Private Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan James

Sir Charles Gairdner Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge