Jocelyn Poissant
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jocelyn Poissant.
Evolution | 2010
Jocelyn Poissant; Alastair J. Wilson; David W. Coltman
The independent evolution of the sexes may often be constrained if male and female homologous traits share a similar genetic architecture. Thus, cross‐sex genetic covariance is assumed to play a key role in the evolution of sexual dimorphism (SD) with consequent impacts on sexual selection, population dynamics, and speciation processes. We compiled cross‐sex genetic correlations (rMF) estimates from 114 sources to assess the extent to which the evolution of SD is typically constrained and test several specific hypotheses. First, we tested if rMF differed among trait types and especially between fitness components and other traits. We also tested the theoretical prediction of a negative relationship between rMF and SD based on the expectation that increases in SD should be facilitated by sex‐specific genetic variance. We show that rMF is usually large and positive but that it is typically smaller for fitness components. This demonstrates that the evolution of SD is typically genetically constrained and that sex‐specific selection coefficients may often be opposite in sign due to sub‐optimal levels of SD. Most importantly, we confirm that sex‐specific genetic variance is an important contributor to the evolution of SD by validating the prediction of a negative correlation between rMF and SD.
Journal of Evolutionary Biology | 2009
Denis Réale; Julien G. A. Martin; David W. Coltman; Jocelyn Poissant; Marco Festa-Bianchet
Recent theoretical work suggests that personality is a component of life history, but links between personality and either age‐dependent reproductive success or life‐history strategy are yet to be established. Using quantitative genetic analyses on a long‐term pedigree we estimated indices of boldness and docility for 105 bighorn sheep rams (Ovis canadensis), born between 1983 and 1999, and compared these indices to their reproductive history from 2 years of age until death. Docility and boldness were highly heritable and negatively genetically correlated. Docile and bold rams survived longer than indocile and shy rams. Docility and boldness had a weak negative effect on reproductive success early in life, but a strong positive effect on older rams. Our findings highlight an important role of personality on reproductive success and suggest that personality could be an important component of life‐history strategy.
Molecular Ecology Resources | 2011
Joshua M. Miller; Jocelyn Poissant; James W. Kijas; David W. Coltman
The development of genomic resources for wild species is still in its infancy. However, cross‐species utilization of technologies developed for their domestic counterparts has the potential to unlock the genomes of organisms that currently lack genomic resources. Here, we apply the OvineSNP50 BeadChip, developed for domestic sheep, to two related wild ungulate species: the bighorn sheep (Ovis canadensis) and the thinhorn sheep (Ovis dalli). Over 95% of the domestic sheep markers were successfully genotyped in a sample of fifty‐two bighorn sheep while over 90% were genotyped in two thinhorn sheep. Pooling the results from both species identified 868 single‐nucleotide polymorphisms (SNPs), 570 were detected in bighorn sheep, while 330 SNPs were identified in thinhorn sheep. The total panel of SNPs was able to discriminate between the two species, assign population of origin for bighorn sheep and detect known relationship classes within one population of bighorn sheep. Using an informative subset of these SNPs (n = 308), we examined the extent of genome‐wide linkage disequilibrium (LD) within one population of bighorn sheep and found that high levels of LD persist over 4 Mb.
Proceedings of the Royal Society of London B: Biological Sciences | 2008
Jocelyn Poissant; Alastair J. Wilson; Marco Festa-Bianchet; John T. Hogg; David W. Coltman
Sexual conflict at loci influencing traits shared between the sexes occurs when sex-specific selection pressures are antagonistic relative to the genetic correlation between the sexes. To assess whether there is sexual conflict over shared traits, we estimated heritability and intersexual genetic correlations for highly sexually dimorphic traits (horn volume and body mass) in a wild population of bighorn sheep (Ovis canadensis) and quantified sex-specific selection using estimates of longevity and lifetime reproductive success. Body mass and horn volume showed significant additive genetic variance in both sexes, and intersexual genetic correlations were 0.24±0.28 for horn volume and 0.63±0.30 for body mass. For horn volume, selection coefficients did not significantly differ from zero in either sex. For body weight, selection coefficients were positive in females but did not differ from zero in males. The absence of detectable sexually antagonistic selection suggests that currently there are no sexual conflicts at loci influencing horn volume and body mass.
Molecular Ecology | 2013
Anna W. Santure; Isabelle De Cauwer; Matthew R. Robinson; Jocelyn Poissant; Ben C. Sheldon; Jon Slate
Clutch size and egg mass are life history traits that have been extensively studied in wild bird populations, as life history theory predicts a negative trade‐off between them, either at the phenotypic or at the genetic level. Here, we analyse the genomic architecture of these heritable traits in a wild great tit (Parus major) population, using three marker‐based approaches – chromosome partitioning, quantitative trait locus (QTL) mapping and a genome‐wide association study (GWAS). The variance explained by each great tit chromosome scales with predicted chromosome size, no location in the genome contains genome‐wide significant QTL, and no individual SNPs are associated with a large proportion of phenotypic variation, all of which may suggest that variation in both traits is due to many loci of small effect, located across the genome. There is no evidence that any regions of the genome contribute significantly to both traits, which combined with a small, nonsignificant negative genetic covariance between the traits, suggests the absence of genetic constraints on the independent evolution of these traits. Our findings support the hypothesis that variation in life history traits in natural populations is likely to be determined by many loci of small effect spread throughout the genome, which are subject to continued input of variation by mutation and migration, although we cannot exclude the possibility of an additional input of major effect genes influencing either trait.
Heredity | 2014
Joshua M. Miller; René M. Malenfant; P David; Corey S. Davis; Jocelyn Poissant; John T. Hogg; Marco Festa-Bianchet; David W. Coltman
Heterozygosity–fitness correlations (HFCs) are often used to link individual genetic variation to differences in fitness. However, most studies examining HFCs find weak or no correlations. Here, we derive broad theoretical predictions about how many loci are needed to adequately measure genomic heterozygosity assuming different levels of identity disequilibrium (ID), a proxy for inbreeding. We then evaluate the expected ability to detect HFCs using an empirical data set of 200 microsatellites and 412 single nucleotide polymorphisms (SNPs) genotyped in two populations of bighorn sheep (Ovis canadensis), with different demographic histories. In both populations, heterozygosity was significantly correlated across marker types, although the strength of the correlation was weaker in a native population compared with one founded via translocation and later supplemented with additional individuals. Despite being bi-allelic, SNPs had similar correlations to genome-wide heterozygosity as microsatellites in both populations. For both marker types, this association became stronger and less variable as more markers were considered. Both populations had significant levels of ID; however, estimates were an order of magnitude lower in the native population. As with heterozygosity, SNPs performed similarly to microsatellites, and precision and accuracy of the estimates of ID increased as more loci were considered. Although dependent on the demographic history of the population considered, these results illustrate that genome-wide heterozygosity, and therefore HFCs, are best measured by a large number of markers, a feat now more realistically accomplished with SNPs than microsatellites.
BMC Genomics | 2010
Jocelyn Poissant; John T. Hogg; Corey S. Davis; Joshua M. Miller; J. F. Maddox; David W. Coltman
BackgroundThe construction of genetic linkage maps in free-living populations is a promising tool for the study of evolution. However, such maps are rare because it is difficult to develop both wild pedigrees and corresponding sets of molecular markers that are sufficiently large. We took advantage of two long-term field studies of pedigreed individuals and genomic resources originally developed for domestic sheep (Ovis aries) to construct a linkage map for bighorn sheep, Ovis canadensis. We then assessed variability in genomic structure and recombination rates between bighorn sheep populations and sheep species.ResultsBighorn sheep population-specific maps differed slightly in contiguity but were otherwise very similar in terms of genomic structure and recombination rates. The joint analysis of the two pedigrees resulted in a highly contiguous map composed of 247 microsatellite markers distributed along all 26 autosomes and the X chromosome. The map is estimated to cover about 84% of the bighorn sheep genome and contains 240 unique positions spanning a sex-averaged distance of 3051 cM with an average inter-marker distance of 14.3 cM. Marker synteny, order, sex-averaged interval lengths and sex-averaged total map lengths were all very similar between sheep species. However, in contrast to domestic sheep, but consistent with the usual pattern for a placental mammal, recombination rates in bighorn sheep were significantly greater in females than in males (~12% difference), resulting in an autosomal female map of 3166 cM and an autosomal male map of 2831 cM. Despite differing genome-wide patterns of heterochiasmy between the sheep species, sexual dimorphism in recombination rates was correlated between orthologous intervals.ConclusionsWe have developed a first-generation bighorn sheep linkage map that will facilitate future studies of the genetic architecture of trait variation in this species. While domestication has been hypothesized to be responsible for the elevated mean recombination rate observed in domestic sheep, our results suggest that it is a characteristic of Ovis species. However, domestication may have played a role in altering patterns of heterochiasmy. Finally, we found that interval-specific patterns of sexual dimorphism were preserved among closely related Ovis species, possibly due to the conserved position of these intervals relative to the centromeres and telomeres. This study exemplifies how transferring genomic resources from domesticated species to close wild relative can benefit evolutionary ecologists while providing insights into the evolution of genomic structure and recombination rates of domesticated species.
Molecular Ecology | 2015
Anna W. Santure; Jocelyn Poissant; Isabelle De Cauwer; Kees van Oers; Matthew R. Robinson; J. Quinn; M.A.M. Groenen; Marcel E. Visser; Ben C. Sheldon; Jon Slate
Currently, there is much debate on the genetic architecture of quantitative traits in wild populations. Is trait variation influenced by many genes of small effect or by a few genes of major effect? Where is additive genetic variation located in the genome? Do the same loci cause similar phenotypic variation in different populations? Great tits (Parus major) have been studied extensively in long‐term studies across Europe and consequently are considered an ecological ‘model organism’. Recently, genomic resources have been developed for the great tit, including a custom SNP chip and genetic linkage map. In this study, we used a suite of approaches to investigate the genetic architecture of eight quantitative traits in two long‐term study populations of great tits—one in the Netherlands and the other in the United Kingdom. Overall, we found little evidence for the presence of genes of large effects in either population. Instead, traits appeared to be influenced by many genes of small effect, with conservative estimates of the number of contributing loci ranging from 31 to 310. Despite concordance between population‐specific heritabilities, we found no evidence for the presence of loci having similar effects in both populations. While population‐specific genetic architectures are possible, an undetected shared architecture cannot be rejected because of limited power to map loci of small and moderate effects. This study is one of few examples of genetic architecture analysis in replicated wild populations and highlights some of the challenges and limitations researchers will face when attempting similar molecular quantitative genetic studies in free‐living populations.
Molecular Ecology Resources | 2009
Jocelyn Poissant; Aaron B. A. Shafer; Corey S. Davis; Julien Mainguy; J. T. Hogg; Steeve D. Côté; David W. Coltman
We tested for cross‐species amplification of microsatellite loci located throughout the domestic sheep (Ovis aries) genome in two north American mountain ungulates (bighorn sheep, Ovis canadensis, and mountain goats, Oreamnos americanus). We identified 247 new polymorphic markers in bighorn sheep (≥ 3 alleles in one of two study populations) and 149 in mountain goats (≥ 2 alleles in a single study population) using 648 and 576 primer pairs, respectively. Our efforts increased the number of available polymorphic microsatellite markers to 327 for bighorn sheep and 180 for mountain goats. The average distance between successive polymorphic bighorn sheep and mountain goat markers inferred from the Australian domestic sheep genome linkage map (mean ± 1 SD) was 11.9 ± 9.2 and 15.8 ± 13.8 centimorgans, respectively. The development of genomic resources in these wildlife species enables future studies of the genetic architecture of trait variation.
Heredity | 2012
Jocelyn Poissant; Corey S. Davis; René M. Malenfant; John T. Hogg; David W. Coltman
Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male–male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep.