Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jocelyne Guay is active.

Publication


Featured researches published by Jocelyne Guay.


Bioorganic & Medicinal Chemistry Letters | 1999

The discovery of rofecoxib, [MK 966, VIOXX®, 4-(4′-methylsulfonylphenyl)-3-phenyl-2(5H)-furanone], an orally active cyclooxygenase-2 inhibitor

Petpiboon Prasit; Zhaoyin Wang; Christine Brideau; Chi-Chung Chan; S. Charleson; Wanda Cromlish; Diane Ethier; Jilly F. Evans; Anthony W. Ford-Hutchinson; Jacques-Yves Gauthier; Robert Gordon; Jocelyne Guay; M Gresser; Stacia Kargman; Brian P. Kennedy; Yves Leblanc; Serge Leger; Joseph A. Mancini; Gary P. O'Neill; Marc Ouellet; M.D Percival; Helene Perrier; Denis Riendeau; Ian W. Rodger; Philip Tagari; Michel Therien; Philip J. Vickers; E.H.F. Wong; Lijing Xu; Robert N. Young

The development of a COX-2 inhibitor rofecoxib (MK 966, Vioxx) is described. It is essentially equipotent to indomethacin both in vitro and in vivo but without the ulcerogenic side effect due to COX-1 inhibition.


British Journal of Pharmacology | 1997

Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor

Denis Riendeau; M.D Percival; Susan Boyce; Christine Brideau; S. Charleson; Wanda Cromlish; Diane Ethier; Jilly F. Evans; Jean-Pierre Falgueyret; Anthony W. Ford-Hutchinson; Robert Gordon; Gillian Greig; M Gresser; Jocelyne Guay; Stacia Kargman; Serge Leger; Joseph A. Mancini; Gary P. O'Neill; Marc Ouellet; Ian W. Rodger; Michel Therien; Zhaoyin Wang; J.K. Webb; E.H.F. Wong; Lijing Xu; Robert N. Young; Robert Zamboni; Petpiboon Prasit; Chi-Chung Chan

DFU (5,5‐dimethyl‐3‐(3‐fluorophenyl)‐4‐(4‐methylsulphonyl)phenyl‐2(5H)‐furanone) was identified as a novel orally active and highly selective cyclo‐oxygenase‐2 (COX‐2) inhibitor. In CHO cells stably transfected with human COX isozymes, DFU inhibited the arachidonic acid‐dependent production of prostaglandin E2 (PGE2) with at least a 1,000 fold selectivity for COX‐2 (IC50=41±14 nM) over COX‐1 (IC50>50 μM). Indomethacin was a potent inhibitor of both COX‐1 (IC50=18±3 nM) and COX‐2 (IC50=26±6 nM) under the same assay conditions. The large increase in selectivity of DFU over indomethacin was also observed in COX‐1 mediated production of thromboxane B2 (TXB2) by Ca2+ ionophore‐challenged human platelets (IC50>50 μM and 4.1±1.7 nM, respectively). DFU caused a time‐dependent inhibition of purified recombinant human COX‐2 with a Ki value of 140±68 μM for the initial reversible binding to enzyme and a k2 value of 0.11±0.06 s−1 for the first order rate constant for formation of a tightly bound enzyme‐inhibitor complex. Comparable values of 62±26 μM and 0.06±0.01 s−1, respectively, were obtained for indomethacin. The enzyme‐inhibitor complex was found to have a 1 : 1 stoichiometry and to dissociate only very slowly (t1/2=1–3 h) with recovery of intact inhibitor and active enzyme. The time‐dependent inhibition by DFU was decreased by co‐incubation with arachidonic acid under non‐turnover conditions, consistent with reversible competitive inhibition at the COX active site. Inhibition of purified recombinant human COX‐1 by DFU was very weak and observed only at low concentrations of substrate (IC50=63±5 μM at 0.1 μM arachidonic acid). In contrast to COX‐2, inhibition was time‐independent and rapidly reversible. These data are consistent with a reversible competitive inhibition of COX‐1. DFU inhibited lipopolysaccharide (LPS)‐induced PGE2 production (COX‐2) in a human whole blood assay with a potency (IC50=0.28±0.04 μM) similar to indomethacin (IC50=0.68±0.17 μM). In contrast, DFU was at least 500 times less potent (IC50>97 μM) than indomethacin at inhibiting coagulation‐induced TXB2 production (COX‐1) (IC50=0.19±0.02 μM). In a sensitive assay with U937 cell microsomes at a low arachidonic acid concentration (0.1 μM), DFU inhibited COX‐1 with an IC50 value of 13±2 μM as compared to 20±1 nM for indomethacin. CGP 28238, etodolac and SC‐58125 were about 10 times more potent inhibitors of COX‐1 than DFU. The order of potency of various inhibitors was diclofenac>indomethacin∼naproxen>nimesulide∼ meloxicam∼piroxicam>NS‐398∼SC‐57666>SC‐58125>CGP 28238∼etodolac>L‐745,337>DFU. DFU inhibited dose‐dependently both the carrageenan‐induced rat paw oedema (ED50 of 1.1 mg kg−1 vs 2.0 mg kg−1 for indomethacin) and hyperalgesia (ED50 of 0.95 mg kg−1 vs 1.5 mg kg−1 for indomethacin). The compound was also effective at reversing LPS‐induced pyrexia in rats (ED50=0.76 mg kg−1 vs 1.1 mg kg−1 for indomethacin). In a sensitive model in which 51Cr faecal excretion was used to assess the integrity of the gastrointestinal tract in rats, no significant effect was detected after oral administration of DFU (100 mg kg−1, b.i.d.) for 5 days, whereas chromium leakage was observed with lower doses of diclofenac (3 mg kg−1), meloxicam (3 mg kg−1) or etodolac (10–30 mg kg−1). A 5 day administration of DFU in squirrel monkeys (100 mg kg−1) did not affect chromium leakage in contrast to diclofenac (1 mg kg−1) or naproxen (5 mg kg−1). The results indicate that COX‐1 inhibitory effects can be detected for all selective COX‐2 inhibitors tested by use of a sensitive assay at low substrate concentration. The novel inhibitor DFU shows the lowest inhibitory potency against COX‐1, a consistent high selectivity of inhibition of COX‐2 over COX‐1 (>300 fold) with enzyme, whole cell and whole blood assays, with no detectable loss of integrity of the gastrointestinal tract at doses >200 fold higher than efficacious doses in models of inflammation, pyresis and hyperalgesia. These results provide further evidence that prostanoids derived from COX‐1 activity are not important in acute inflammatory responses and that a high therapeutic index of anti‐inflammatory effect to gastropathy can be achieved with a selective COX‐2 inhibitor.


Bioorganic & Medicinal Chemistry Letters | 1998

Quinolines as potent 5-lipoxygenase inhibitors: Synthesis and biological profile of L-746,530

Daniel Dube; Marc Blouin; Christine Brideau; Chi-Chung Chan; Sylvie Desmarais; Diane Ethier; Jean-Pierre Falgueyret; Richard W. Friesen; Mario Girard; Yves Girard; Jocelyne Guay; Denis Riendeau; Philip Tagari; Robert N. Young

Leukotriene biosynthesis inhibitors have potential as new therapeutic agents for asthma and inflammatory diseases. A series of novel substituted 2-cyanoquinolines have been synthesized and the structure activity relationships were evaluated with respect to their ability to inhibit the formation of leukotrienes via the 5-lipoxygenase enzyme. [1S,5R]-2-Cyano-4-(3-furyl)-7-¿3-fluoro-5-[3-(3 alpha-hydroxy-6,8-dioxabicyclo[3.2.1]-octanyl)]phenoxymethyl ¿quinoline (L-746,530) 3 represents a distinct class of inhibitors and possesses in vitro and in vivo potency comparable or superior to naphthalenic analog (L-739,010) 2.


Journal of Immunology | 2003

Microsomal prostaglandin E synthase-1 is a major terminal synthase that is selectively up-regulated during cyclooxygenase-2-dependent prostaglandin E2 production in the rat adjuvant-induced arthritis model.

David Claveau; Mirna Sirinyan; Jocelyne Guay; Robert Gordon; Chi-Chung Chan; Yves Bureau; Denis Riendeau; Joseph A. Mancini

To better define the role of the various prostanoid synthases in the adjuvant-induced arthritis (AIA) model, we have determined the temporal expression of the inducible PGE synthase (mPGES-1), mPGES-2, the cytosolic PGES (cPGES/p23), and prostacyclin synthase, and compared with that of cyclooxygenase-1 (COX-1) and COX-2. The profile of induction of mPGES-1 (50- to 80-fold) in the primary paw was similar to that of COX-2 by both RNA and protein analysis. Quantitative PCR analysis indicated that induction of mPGES-1 at day 15 was within 2-fold that of COX-2. Increased PGES activity was measurable in membrane preparations of inflamed paws, and the activity was inhibitable by MK-886 to ≥90% with a potency similar to that of recombinant rat mPGES-1 (IC50 = 2.4 μM). The RNA of the newly described mPGES-2 decreased by 2- to 3-fold in primary paws between days 1 and 15 postadjuvant. The cPGES/p23 and COX-1 were induced during AIA, but at much lower levels (2- to 6-fold) than mPGES-1, with the peak of cPGES/p23 expression occurring later than that of COX-2 and PGE2 production. Prostacyclin (measured as 6-keto-PGF1α) was transiently elevated on day 1, and prostacyclin synthase was down-regulated at the RNA level after day 3, suggesting a diminished role of prostacyclin during the maintenance of chronic inflammation in the rat AIA. These results show that mPGES-1 is up-regulated throughout the development of AIA and suggest that it plays a major role in the elevated production of PGE2 in this model.


Journal of Medicinal Chemistry | 2011

Development of a Liver-Targeted Stearoyl-CoA Desaturase (SCD) Inhibitor (MK-8245) to Establish a Therapeutic Window for the Treatment of Diabetes and Dyslipidemia

Renata Oballa; Liette Belair; W. Cameron Black; Kelly Bleasby; Chi-Chung Chan; Carole Desroches; Xiaobing Du; Robert Gordon; Jocelyne Guay; Sébastien Guiral; Michael J. Hafey; Emelie Hamelin; Zheng Huang; Brian Kennedy; Nicolas Lachance; Chun Sing Li; Joseph A. Mancini; Denis Normandin; Alessandro Pocai; David Powell; Yeeman K. Ramtohul; Kathryn Skorey; Dan Sørensen; Wayne Sturkenboom; Angela Styhler; Deena Waddleton; Hao Wang; Simon Wong; Lijing Xu; Lei Zhang

The potential use of SCD inhibitors for the chronic treatment of diabetes and dyslipidemia has been limited by preclinical adverse events associated with inhibition of SCD in skin and eye tissues. To establish a therapeutic window, we embarked on designing liver-targeted SCD inhibitors by utilizing molecular recognition by liver-specific organic anion transporting polypeptides (OATPs). In doing so, we set out to target the SCD inhibitor to the organ believed to be responsible for the therapeutic efficacy (liver) while minimizing its exposure in the tissues associated with mechanism-based SCD depletion of essential lubricating lipids (skin and eye). These efforts led to the discovery of MK-8245 (7), a potent, liver-targeted SCD inhibitor with preclinical antidiabetic and antidyslipidemic efficacy with a significantly improved therapeutic window.


Bioorganic & Medicinal Chemistry Letters | 1997

A new series of selective COX-2 inhibitors: 5,6-diarylthiazolo[3,2-b][1,2,4]triazoles

Patrick Roy; Yves Leblanc; Richard G. Ball; Christine Brideau; Chi-Chung Chan; Nathalie Chauret; Wanda Cromlish; Diane Ethier; Jacques-Yves Gauthier; Robert Gordon; Gillian Greig; Jocelyne Guay; Stacia Kargman; Cheuk K. Lau; Gary P. O'Neill; José M. Silva; Michel Therien; C. van Staden; Elizabeth Wong; Lijing Xu; Petpiboon Prasit

A series of 5,6-diarylthiazolo[3,2-b][1,2,4]triazoles was prepared for evaluation of potency and selectivity against human COX-1 and COX-2 enzymes. This lead to the discovery of L-768,277, a potent and selective COX-2 inhibitor that also demonstrated good in vivo activity.


Bioorganic & Medicinal Chemistry Letters | 1995

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2,3-DIARYLTHIOPHENES AS SELECTIVE COX-2 AND COX-1 INHIBITORS

Yves Leblanc; Jacques-Yves Gauthier; Diane Ethier; Jocelyne Guay; Joseph A. Mancini; Denis Riendeau; Philip Tagari; Philip J. Vickers; Elizabeth Wong; Petpiboon Prasit

Abstract A series of 2,3-diarylthiophene compounds was prepared and their biological activities were evaluated against human Cox-1 and Cox-2 enzymes. It appears that the methylsulfone group is essential for both the activity and selectivity for the Cox-2 enzyme. Removal of the methylsulfone group gave relatively selective Cox-1 inhibitors.


Bioorganic & Medicinal Chemistry Letters | 1996

Synthesis and biological evaluation of 2,3-diarylthiophenes as selective cox-2 inhibitors. part II: Replacing the heterocycle

Jacques Yves Gauthier; Yves Leblanc; W. Cameron Black; Chi-Chung Chan; Wanda Cromlish; Robert Gordon; Brian P. Kennedey; Cheuk K. Lau; Serge Leger; Zhaoyin Wang; Diane Ethier; Jocelyne Guay; Joseph A. Mancini; Denis Riendeau; Philip Tagari; Philip J. Vickers; Elizabeth Wong; Lijing Xu; Peptiboon Prasit

Abstract The thiophene ring of DuP 697 was replaced by a variety of heterocycles and the products were tested for their ability to inhibit human Cox-2 and Cox-1, the isozymes of cyclooxygenase.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and biological activity of a potent and orally bioavailable SCD inhibitor (MF-438)

Serge Leger; W. Cameron Black; Denis Deschenes; Sarah J. Dolman; Jean-Pierre Falgueyret; Marc Gagnon; Sébastien Guiral; Zheng Huang; Jocelyne Guay; Yves Leblanc; Chun-Sing Li; Frédéric Massé; Renata Oballa; Lei Zhang

A series of stearoyl-CoA desaturase 1 (SCD1) inhibitors were developed. Investigations of enzyme potency and metabolism led to the identification of the thiadiazole-pyridazine derivative MF-438 as a potent SCD1 inhibitor. MF-438 exhibits good pharmacokinetics and metabolic stability, thereby serving as a valuable tool for further understanding the role of SCD inhibition in biological and pharmacological models of diseases related to metabolic disorders.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of disubstituted phenanthrene imidazoles as potent, selective and orally active mPGES-1 inhibitors

André Giroux; Louise Boulet; Christine Brideau; Anh Chau; David Claveau; Bernard Cote; Diane Ethier; Richard Frenette; Marc Gagnon; Jocelyne Guay; Sébastien Guiral; Joseph A. Mancini; Evelyn Martins; Frédéric Massé; Nathalie Méthot; Denis Riendeau; Joel Rubin; Daigen Xu; Hongping Yu; Yves Ducharme; Richard W. Friesen

Phenanthrene imidazoles 26 and 44 have been identified as novel potent, selective and orally active mPGES-1 inhibitors. These inhibitors are significantly more potent than the previously reported chlorophenanthrene imidazole 1 (MF63) with a human whole blood IC50 of 0.20 and 0.14 microM, respectively. It exhibited a significant analgesic effect in a guinea pig hyperalgesia model at oral doses as low as 14 mg/kg. Both active and selective mPGES-1 inhibitors (26 and 44) have a relatively distinct pharmacokinetic profile and are suitable for clinical development.

Researchain Logo
Decentralizing Knowledge