Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jocelyne Pelletier is active.

Publication


Featured researches published by Jocelyne Pelletier.


International Journal of Pharmaceutics | 2001

Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms

M. Moisan; Jean Barbeau; Moreau S; Jocelyne Pelletier; M. Tabrizian; L'Hocine Yahia

Utilizing an ionized gas (plasma) to achieve sterilization is an alternative to conventional sterilization means as far as sterilization of heat-sensitive materials and innocuity of sterilizing agents are concerned. The literature on plasma sterilization is reviewed. A major issue of plasma sterilization is the respective roles of UV photons and reactive species such as atomic and radicals. Insight into this matter is obtained by analyzing the survival curves of microorganisms. In contrast to classical sterilization where such plots show a unique straight line, plasma sterilization yields survival diagrams with two or three different linear segments. Three basic mechanisms are involved in the plasma inactivation of microorganisms: (A) direct destruction by UV irradiation of the genetic material of microorganisms; (B) erosion of the microorganisms atom by atom, through intrinsic photodesorption by UV irradiation to form volatile compounds combining atoms intrinsic to the microorganisms; (C) erosion of the microorganisms, atom by atom, through etching to form volatile compounds as a result of slow combustion using oxygen atoms or radicals emanating from the plasma. In some cases, etching is further activated by UV photons, increasing the elimination rate of microorganisms. These mechanisms make plasma sterilization totally different from classical sterilization techniques and suggest its use to inactivate nonconventional infectious agents such as the abnormal prions.


Journal of Applied Physics | 2000

Using the flowing afterglow of a plasma to inactivate Bacillus subtilis spores: Influence of the operating conditions

Stéphane Moreau; Michel Moisan; M. Tabrizian; Jean Barbeau; Jocelyne Pelletier; A. Ricard; L'Hocine Yahia

The flowing afterglow of a microwave discharge can be used to efficiently inactivate bacterial spores. We have conducted a parametric study of the operating conditions of such a system, which shows that the species participating in the killing of spores are oxygen atoms and ultraviolet (UV) photons. The oxygen atoms and the excited atoms and molecules emitting the photons being carried by the flowing afterglow can be made available throughout the sterilization chamber. Typical operating conditions are: gas mixture 2%O2/98%N2, pressure range 1–7 Torr and gas flow 0.5–3 slm. Total inactivation of 106 B. subtilis spores is achieved within 40 min with 100 W absorbed microwave power, at afterglow gas temperatures not exceeding 50 °C, a feature of interest for heat sensitive medical devices. The present scheme depends on the gas flow reaching all parts of the objects to be sterilized and on the short-lived active species being transported there sufficiently rapid. Under our operating conditions, it is the UV em...


International Journal of Pharmaceutics | 2009

Topical delivery of lipophilic drugs from o/w Pickering emulsions

Justyna Frelichowska; Marie-Alexandrine Bolzinger; Jocelyne Pelletier; Jean-Pierre Valour; Yves Chevalier

Surfactant-free emulsions stabilized by solid particles (Pickering emulsions) have been evaluated in the terms of skin absorption of lipophilic drugs. The behavior of three formulations: a surfactant-based emulsion, a Pickering emulsion stabilized by silica particles and a solution in triglyceride oil, were compared in order to assess the effect of the surface coating of Pickering emulsions as new dosage forms for topical application. Such comparative investigation was performed in vitro on excised pig skin in Franz diffusion cells with all-trans retinol as model lipophilic drug. Surfactant-based (classical, CE) and Pickering (PE) oil-in-water emulsions containing retinol were prepared with the same chemical composition (except the stabilizing agent: surfactant or silica particles), the same droplet size and the same viscosity. No permeation through the skin sample was observed after 24h exposure because of the high lipophilic character of retinol. Penetration of retinol was 5-fold larger for both CE and PE than for the solution in triglyceride. The distribution of retinol inside the skin layers depended significantly on the emulsions type: the classical emulsion allowed easy diffusion through the stratum corneum, so that large amounts reached the viable epidermis and dermis. Conversely, high storage of retinol inside the stratum corneum was favored by the Pickering emulsion. The retinol content in stratum corneum evaluated by skin stripping, demonstrated the increased retinol accumulation from PE. Therefore Pickering emulsions are new drug penetration vehicles with specific behavior; they are well-suited either for targeting the stratum corneum or aimed at slow release of drug from stratum corneum used as a reservoir to the deeper layers of skin.


International Journal of Pharmaceutics | 2009

Pickering w/o emulsions: Drug release and topical delivery

Justyna Frelichowska; Marie-Alexandrine Bolzinger; Jean-Pierre Valour; Hanna Mouaziz; Jocelyne Pelletier; Yves Chevalier

The skin absorption from Pickering emulsions as a new dosage form was investigated for the first time. Pickering emulsions are stabilized by adsorbed solid particles instead of emulsifier molecules. They are promising dosage forms that significantly differ from classical emulsions within several features. The skin permeation of a hydrophilic model penetrant (caffeine) was investigated from a w/o Pickering emulsion and compared to a w/o classical emulsion stabilized with an emulsifier. Both emulsions had the same composition and physicochemical properties in order to focus on the effect of the interfacial layer on the drug release and skin absorption processes. The highest permeation rates were obtained from the Pickering emulsion with a pseudo-steady state flux of 25 microg cm(-2)h(-1), threefold higher than from a classical emulsion (9.7 microg cm(-2)h(-1)). After 24h exposure, caffeine was mostly in the receptor fluid and in the dermis; cumulated amounts of caffeine were higher for the Pickering emulsion. Several physicochemical phenomena were investigated for clearing up the mechanisms of enhanced permeation from the Pickering emulsion. Among them, higher adhesion of Pickering emulsion droplets to skin surface was disclosed. The transport of caffeine adsorbed on silica particles was also considered relevant since skin stripping showed that aggregates of silica particles entered deeply the stratum corneum.


European Journal of Pharmaceutics and Biopharmaceutics | 2008

Percutaneous release of caffeine from microemulsion, emulsion and gel dosage forms

Marie-Alexandrine Bolzinger; Stéphanie Briançon; Jocelyne Pelletier; Hatem Fessi; Yves Chevalier

The transport of caffeine to the hypodermis by an alcohol-free o/w microemulsion was investigated and compared with an aqueous gel and an o/w emulsion. The microemulsion was well characterized and in vitro diffusion measurements through pig skin having the hypodermis either kept or removed were performed in static Franz cells. The microemulsion allowed delivery of a large fraction of the caffeine in the hypodermis: 23% of caffeine reached the hypodermis after 24h diffusion, 1.3-fold larger than from the emulsion and gel dosage forms. Half this amount was stored in the hypodermis, the other half continuing its diffusion to the receptor compartment of the Franz cell.


Journal of Microencapsulation | 2010

Skin absorption studies of octyl-methoxycinnamate loaded poly(D,L-lactide) nanoparticles: estimation of the UV filter distribution and release behaviour in skin layers.

M. Vettor; Sandrine Bourgeois; Hatem Fessi; Jocelyne Pelletier; Paola Perugini; Franca Pavanetto; Marie-Alexandrine Bolzinger

New formulation strategies have to be developed to limit the skin penetration of UV-filter. Nanoparticles (NP) are very suitable for that purpose. In this study, the skin distribution, at different times (1, 2 and 3 h), of octyl-methoxycinnamate (OMC) from loaded PLA-nanoparticles was compared to a classical formulation containing non-encapsulated OMC, using the Franz cell method. The results showed that the OMC penetration was clearly impeded by stratum corneum and that the major part of the OMC-NP was accumulated at the skin surface (>80%). A significant lower OMC amount was quantified in viable skin with NP compared to the OMC emulgel. To accurately determine the real OMC amount in close contact with viable skin layers two solvents were used to extract OMC from the skin compartments. Acetone (ACET) allowed quantifying both OMC in NP and OMC released from the particles, while isopropylmyristate (IPM), a non-solvent of the NP polymer (PLA), allowed quantifying only OMC released from the particles. Using IPM as an extraction solvent, it appeared that the OMC released from NP, in contact with viable skin, was 3-fold lower than free OMC diffused from the emulgel. Lastly, a sustained release was observed when nanoparticles were used.


Journal of Pharmacy and Pharmacology | 2010

Development of an original method to study drug release from polymeric nanocapsules in the skin

Valeria Weiss-Angeli; Sandrine Bourgeois; Jocelyne Pelletier; Silvia Stanisçuaski Guterres; Hatem Fessi; Marie-Alexandrine Bolzinger

Objectives This study aimed to investigate the distribution and release profile in the skin of a lipophilic model molecule, octylmethoxycinnamate (OMC), loaded in poly(ε‐caprolactone) nanocapsules (NC) by the Franz cell method.


International Journal of Pharmaceutics | 2010

Skin contamination by radiopharmaceuticals and decontamination strategies

Marie-Alexandrine Bolzinger; C. Bolot; G. Galy; A. Chabanel; Jocelyne Pelletier; Stéphanie Briançon

The aim of the present study was to evaluate the percutaneous penetration of five common radiopharmaceuticals ((99m)Tc, (67)Ga, (125)I, (111)In and (51)Cr) and to evaluate the effect of decontamination by a detergent solution dedicated to hospital institutions for that purpose. The skin kinetic profiles were established by using the in vitro Franz cell method over 24h. The skin distribution in each skin layer was quantified after 6h exposure time and the efficacy of the detergent solution to remove radionuclides was evaluated also after 6h. The most striking result was the repartition into two classes of kinetic profiles: (125)I and (99m)Tc permeated quickly (∼60% of applied activity after 24h) while the 3 other radionuclides permeated slowly (from ∼2.75% for (67)Ga to ∼10% of applied activity for (111)In). The lag times, i.e. the time necessary to cross the skin varied from 20min for (99m)Tc to 5h for (51)Cr, which accumulated in skin compartments. Skin washings with the detergent solution were particularly efficient for this radionuclide, contrary to the others for which the washing procedure should be applied earlier. The permeation of ions was dependent on their chemical and physical forms and on their salting-in or salting-out effects (coordination state and Hofmeister series).


International Journal of Pharmaceutics | 2017

Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery

Faiza Laredj-Bourezg; Marie-Alexandrine Bolzinger; Jocelyne Pelletier; Yves Chevalier

Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process.


International Journal of Pharmaceutics | 2016

Microencapsulation of rifampicin for the prevention of endophthalmitis: In vitro release studies and antibacterial assessment

Mi Yeon Lee; Sandrine Bourgeois; Eyad Almouazen; Jocelyne Pelletier; François N. R. Renaud; Hatem Fessi; Laurent Kodjikian

Rifampicin encapsulated microparticles were designed for intraocular injection after cataract surgery to prevent postoperative endophthalmitis. Microparticles were formulated by emulsification diffusion method using poly(lactic acid-co-glycolic acid) (PLGA) as polymer in order to propose a new form of rifampicin that overcome its limitations in intraocular delivery. Depending on processing formulation, different types of microparticles were prepared, characterized and evaluated by in vitro release studies. Two types of microparticles were selected to get a burst release of rifampicin, to reach minimal inhibitory concentrations to inhibit 90% of Staphylococcus epidermidis mainly involved in postoperative endophthalmitis, combined with a sustained release to maintain rifampicin concentration over 24h. The antibacterial activity and antiadhesive property on intraocular lenses were evaluated on S. epidermidis. Microparticles, with a rapid rifampicin release profile, showed an effect towards bacteria development similar to free rifampicin over 48h. However, slow-release profile microparticles exhibited a similar antibacterial effect during the first 24h, and were able to destroy all the S epidermidis in the medium after 30h. The association of the two formulations allowed obtaining interesting antibacterial profile. Moreover, rifampicin-loaded microparticles have shown a very efficient anti-adherent effect of S. epidermidis on intraocular lenses at 24h. These results propose rifampicin microparticles as suitable for antibioprophylaxis of the postoperative endophthalmitis.

Collaboration


Dive into the Jocelyne Pelletier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denis Josse

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge