Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jochen B. Geigl is active.

Publication


Featured researches published by Jochen B. Geigl.


Cancer Research | 2013

Complex Tumor Genomes Inferred from Single Circulating Tumor Cells by Array-CGH and Next-Generation Sequencing

Ellen Heitzer; Martina Auer; Christin Gasch; Martin Pichler; Peter Ulz; Eva Maria Hoffmann; Sigurd Lax; Julie Waldispuehl-Geigl; Oliver Mauermann; Carolin Lackner; Gerald Höfler; Florian Eisner; Heinz Sill; Hellmut Samonigg; Klaus Pantel; Sabine Riethdorf; Thomas Bauernhofer; Jochen B. Geigl; Michael R. Speicher

Circulating tumor cells (CTC) released into blood from primary cancers and metastases reflect the current status of tumor genotypes, which are prone to changes. Here, we conducted the first comprehensive genomic profiling of CTCs using array-comparative genomic hybridization (CGH) and next-generation sequencing. We used the U.S. Food and Drug Administration-cleared CellSearch system, which detected CTCs in 21 of 37 patients (range, 1-202/7.5 mL sample) with stage IV colorectal carcinoma. In total, we were able to isolate 37 intact CTCs from six patients and identified in those multiple colorectal cancer-associated copy number changes, many of which were also present in the respective primary tumor. We then used massive parallel sequencing of a panel of 68 colorectal cancer-associated genes to compare the mutation spectrum in the primary tumors, metastases, and the corresponding CTCs from two of these patients. Mutations in known driver genes [e.g., adenomatous polyposis coli (APC), KRAS, or PIK3CA] found in the primary tumor and metastasis were also detected in corresponding CTCs. However, we also observed mutations exclusively in CTCs. To address whether these mutations were derived from a small subclone in the primary tumor or represented new variants of metastatic cells, we conducted additional deep sequencing of the primary tumor and metastasis and applied a customized statistical algorithm for analysis. We found that most mutations initially found only in CTCs were also present at subclonal level in the primary tumors and metastases from the same patient. This study paves the way to use CTCs as a liquid biopsy in patients with cancer, providing more effective options to monitor tumor genomes that are prone to change during progression, treatment, and relapse.


Clinical Chemistry | 2015

Circulating Tumor DNA as a Liquid Biopsy for Cancer

Ellen Heitzer; Peter Ulz; Jochen B. Geigl

BACKGROUND Targeted therapies have markedly changed the treatment of cancer over the past 10 years. However, almost all tumors acquire resistance to systemic treatment as a result of tumor heterogeneity, clonal evolution, and selection. Although genotyping is the most currently used method for categorizing tumors for clinical decisions, tumor tissues provide only a snapshot, or are often difficult to obtain. To overcome these issues, methods are needed for a rapid, cost-effective, and noninvasive identification of biomarkers at various time points during the course of disease. Because cell-free circulating tumor DNA (ctDNA) is a potential surrogate for the entire tumor genome, the use of ctDNA as a liquid biopsy may help to obtain the genetic follow-up data that are urgently needed. CONTENT This review includes recent studies exploring the diagnostic, prognostic, and predictive potential of ctDNA as a liquid biopsy in cancer. In addition, it covers biological and technical aspects, including recent advances in the analytical sensitivity and accuracy of DNA analysis as well as hurdles that have to be overcome before implementation into clinical routine. SUMMARY Although the analysis of ctDNA is a promising area, and despite all efforts to develop suitable tools for a comprehensive analysis of tumor genomes from plasma DNA, the liquid biopsy is not yet routinely used as a clinical application. Harmonization of preanalytical and analytical procedures is needed to provide clinical standards to validate the liquid biopsy as a clinical biomarker in well-designed and sufficiently powered multicenter studies.


Trends in Genetics | 2008

Defining ‘chromosomal instability’

Jochen B. Geigl; Anna C. Obenauf; Thomas Schwarzbraun; Michael R. Speicher

Most scientists agree that the majority of human solid malignant tumors are characterized by chromosomal instability (CIN) involving gain or loss of whole chromosomes or fractions of chromosomes. CIN is thought to be an early event during tumorigenesis and might therefore be involved in tumor initiation. Despite its frequent occurrence in tumors and its potential importance in tumor evolution, CIN is poorly defined and is used inconsistently and imprecisely. Here, we provide criteria to define CIN and argue that few experimental approaches are capable of assessing the presence of CIN. Accurate assessment of CIN is crucial to elucidate whether CIN is a driving force for tumorigenesis and whether a chromosomally unstable genome is necessary for tumor progression.


Nucleic Acids Research | 2007

High resolution array-CGH analysis of single cells

Heike Fiegler; Jochen B. Geigl; Sabine Langer; Diane Rigler; K. M. Porter; Kristian Unger; Nigel P. Carter; Michael R. Speicher

Heterogeneity in the genome copy number of tissues is of particular importance in solid tumor biology. Furthermore, many clinical applications such as pre-implantation and non-invasive prenatal diagnosis would benefit from the ability to characterize individual single cells. As the amount of DNA from single cells is so small, several PCR protocols have been developed in an attempt to achieve unbiased amplification. Many of these approaches are suitable for subsequent cytogenetic analyses using conventional methodologies such as comparative genomic hybridization (CGH) to metaphase spreads. However, attempts to harness array-CGH for single-cell analysis to provide improved resolution have been disappointing. Here we describe a strategy that combines single-cell amplification using GenomePlex library technology (GenomePlex® Single Cell Whole Genome Amplification Kit, Sigma-Aldrich, UK) and detailed analysis of genomic copy number changes by high-resolution array-CGH. We show that single copy changes as small as 8.3 Mb in single cells are detected reliably with single cells derived from various tumor cell lines as well as patients presenting with trisomy 21 and Prader–Willi syndrome. Our results demonstrate the potential of this technology for studies of tumor biology and for clinical diagnostics.


International Journal of Cancer | 2013

Establishment of tumor‐specific copy number alterations from plasma DNA of patients with cancer

Ellen Heitzer; Martina Auer; Eva Maria Hoffmann; Martin Pichler; Christin Gasch; Peter Ulz; Sigurd Lax; Julie Waldispuehl-Geigl; Oliver Mauermann; Sumitra Mohan; Gunda Pristauz; Carolin Lackner; Gerald Höfler; Florian Eisner; Edgar Petru; Heinz Sill; Hellmut Samonigg; Klaus Pantel; Sabine Riethdorf; Thomas Bauernhofer; Jochen B. Geigl; Michael R. Speicher

With the increasing number of available predictive biomarkers, clinical management of cancer is becoming increasingly reliant on the accurate serial monitoring of tumor genotypes. We tested whether tumor‐specific copy number changes can be inferred from the peripheral blood of patients with cancer. To this end, we determined the plasma DNA size distribution and the fraction of mutated plasma DNA fragments with deep sequencing and an ultrasensitive mutation‐detection method, i.e., the Beads, Emulsion, Amplification, and Magnetics (BEAMing) assay. When analyzing the plasma DNA of 32 patients with Stage IV colorectal carcinoma, we found that a subset of the patients (34.4%) had a biphasic size distribution of plasma DNA fragments that was associated with increased circulating tumor cell numbers and elevated concentration of mutated plasma DNA fragments. In these cases, we were able to establish genome‐wide tumor‐specific copy number alterations directly from plasma DNA. Thus, we could analyze the current copy number status of the tumor genome, which was in some cases many years after diagnosis of the primary tumor. An unexpected finding was that not all patients with progressive metastatic disease appear to release tumor DNA into the circulation in measurable quantities. When we analyzed plasma DNA from 35 patients with metastatic breast cancer, we made similar observations suggesting that our approach may be applicable to a variety of tumor entities. This is the first description of such a biphasic distribution in a surprisingly high proportion of cancer patients which may have important implications for tumor diagnosis and monitoring.


PLOS Genetics | 2014

Changes in Colorectal Carcinoma Genomes under Anti-EGFR Therapy Identified by Whole-Genome Plasma DNA Sequencing

Sumitra Mohan; Ellen Heitzer; Peter Ulz; Ingrid Lafer; Sigurd Lax; Martina Auer; Martin Pichler; Armin Gerger; Florian Eisner; Gerald Hoefler; Thomas Bauernhofer; Jochen B. Geigl; Michael R. Speicher

Monoclonal antibodies targeting the Epidermal Growth Factor Receptor (EGFR), such as cetuximab and panitumumab, have evolved to important therapeutic options in metastatic colorectal cancer (CRC). However, almost all patients with clinical response to anti-EGFR therapies show disease progression within a few months and little is known about mechanism and timing of resistance evolution. Here we analyzed plasma DNA from ten patients treated with anti-EGFR therapy by whole genome sequencing (plasma-Seq) and ultra-sensitive deep sequencing of genes associated with resistance to anti-EGFR treatment such as KRAS, BRAF, PIK3CA, and EGFR. Surprisingly, we observed that the development of resistance to anti-EGFR therapies was associated with acquired gains of KRAS in four patients (40%), which occurred either as novel focal amplifications (n = 3) or as high level polysomy of 12p (n = 1). In addition, we observed focal amplifications of other genes recently shown to be involved in acquired resistance to anti-EGFR therapies, such as MET (n = 2) and ERBB2 (n = 1). Overrepresentation of the EGFR gene was associated with a good initial anti-EGFR efficacy. Overall, we identified predictive biomarkers associated with anti-EGFR efficacy in seven patients (70%), which correlated well with treatment response. In contrast, ultra-sensitive deep sequencing of KRAS, BRAF, PIK3CA, and EGFR did not reveal the occurrence of novel, acquired mutations. Thus, plasma-Seq enables the identification of novel mutant clones and may therefore facilitate early adjustments of therapies that may delay or prevent disease progression.


Science Translational Medicine | 2014

Hematogenous dissemination of glioblastoma multiforme

Carolin Müller; Johannes Holtschmidt; Martina Auer; Ellen Heitzer; Katrin Lamszus; Alexander Schulte; Jakob Matschke; Sabine Langer-Freitag; Christin Gasch; Malgorzata Stoupiec; Oliver Mauermann; Sven Peine; Markus Glatzel; Michael R. Speicher; Jochen B. Geigl; Manfred Westphal; Klaus Pantel; Sabine Riethdorf

Hematogenous spread of glioblastoma multiforme (GBM) might be responsible for reported extracranial metastases and transmission of GBM by organ transplantation. Circulating Brain Tumor Cells Glioblastoma multiforme is an aggressive brain tumor that is most common in adults. It was generally thought that glioblastoma could not metastasize outside the central nervous system, and patients were even allowed to serve as organ donors. However, some reports of glioblastoma transmission through transplanted organs prompted researchers to reconsider this idea. Now, Müller et al. report that about 20% of glioblastoma patients have circulating tumor cells in their blood, suggesting that these patients should not serve as organ donors and offering new insights into the biology of this generally incurable disease. Glioblastoma multiforme (GBM) is the most frequent and aggressive brain tumor in adults. The dogma that GBM spread is restricted to the brain was challenged by reports on extracranial metastases after organ transplantation from GBM donors. We identified circulating tumor cells (CTCs) in peripheral blood (PB) from 29 of 141 (20.6%) GBM patients by immunostaining of enriched mononuclear cells with antibodies directed against glial fibrillary acidic protein (GFAP). Tumor cell spread was not significantly enhanced by surgical intervention. The tumor nature of GFAP-positive cells was supported by the absence of those cells in healthy volunteers and the presence of tumor-specific aberrations such as EGFR gene amplification and gains and losses in genomic regions of chromosomes 7 and 10. Release of CTCs was associated with EGFR gene amplification, suggesting a growth potential of these cells. We demonstrate that hematogenous GBM spread is an intrinsic feature of GBM biology.


Cancer Research | 2004

Analysis of Gene Expression Patterns and Chromosomal Changes Associated with Aging

Jochen B. Geigl; Sabine Langer; Simone Barwisch; Katrin Pfleghaar; Gaby Lederer; Michael R. Speicher

Age is the largest single risk factor for the development of cancer in mammals. Age-associated chromosomal changes, such as aneuploidy and telomere erosion, may be vitally involved in the initial steps of tumorigenesis. However, changes in gene expression specific for increased aneuploidy with age have not yet been characterized. Here, we address these questions by using a panel of fibroblast cell lines and lymphocyte cultures from young and old age groups. Oligonucleotide microarrays were used to characterize the expression of 14,500 genes. We measured telomere length and analyzed chromosome copy number changes and structural rearrangements by multicolor interphase fluorescence in situ hybridization and 7-fluorochrome multiplex fluorescence in situ hybridization, and we tried to show a relationship between gene expression patterns and chromosomal changes. These analyses revealed a number of genes involved in both the cell cycle and proliferation that are differently expressed in aged cells. More importantly, our data show an association between age-related aneuploidy and the gene expression level of genes involved in centromere and kinetochore function and in the microtubule and spindle assembly apparatus. To verify that some of these genes may also be involved in tumorigenesis, we compared the expression of these genes in chromosomally stable microsatellite instability and chromosomally unstable chromosomal instability colorectal tumor cell lines. Three genes (Notch2, H2AFY2, and CDC5L) showed similar expression differences between microsatellite instability and chromosomal instability cell lines as observed between the young and old cell cultures suggesting that they may play a role in tumorigenesis.


Breast Cancer Research | 2014

The dynamic range of circulating tumor DNA in metastatic breast cancer

Maryam Heidary; Martina Auer; Peter Ulz; Ellen Heitzer; Edgar Petru; Christin Gasch; Sabine Riethdorf; Oliver Mauermann; Ingrid Lafer; Gunda Pristauz; Sigurd Lax; Klaus Pantel; Jochen B. Geigl; Michael R. Speicher

IntroductionThe management of metastatic breast cancer needs improvement. As clinical evaluation is not very accurate in determining the progression of disease, the analysis of circulating tumor DNA (ctDNA) has evolved to a promising noninvasive marker of disease evolution. Indeed, ctDNA was reported to represent a highly sensitive biomarker of metastatic cancer disease directly reflecting tumor burden and dynamics. However, at present little is known about the dynamic range of ctDNA in patients with metastatic breast cancer.MethodsIn this study, 74 plasma DNA samples from 58 patients with metastasized breast cancer were analyzed with a microfluidic device to determine the plasma DNA size distribution and copy number changes in the plasma were identified by whole-genome sequencing (plasma-Seq). Furthermore, in an index patient we conducted whole-genome, exome, or targeted deep sequencing of the primary tumor, metastases, and circulating tumor cells (CTCs). Deep sequencing was done to accurately determine the allele fraction (AFs) of mutated DNA fragments.ResultsAlthough all patients had metastatic disease, plasma analyses demonstrated highly variable AFs of mutant fragments. We analyzed an index patient with more than 100,000 CTCs in detail. We first conducted whole-genome, exome, or targeted deep sequencing of four different regions from the primary tumor and three metastatic lymph node regions, which enabled us to establish the phylogenetic relationships of these lesions, which were consistent with a genetically homogeneous cancer. Subsequent analyses of 551 CTCs confirmed the genetically homogeneous cancer in three serial blood analyses. However, the AFs of ctDNA were only 2% to 3% in each analysis, neither reflecting the tumor burden nor the dynamics of this progressive disease. These results together with high-resolution plasma DNA fragment sizing suggested that differences in phagocytosis and DNA degradation mechanisms likely explain the variable occurrence of mutated DNA fragments in the blood of patients with cancer.ConclusionsThe dynamic range of ctDNA varies substantially in patients with metastatic breast cancer. This has important implications for the use of ctDNA as a predictive and prognostic biomarker.


Nature Protocols | 2007

Single-cell isolation from cell suspensions and whole genome amplification from single cells to provide templates for CGH analysis

Jochen B. Geigl; Michael R. Speicher

A comprehensive genomic analysis of single cells is instrumental for numerous applications in tumor genetics, clinical diagnostics and forensic analyses. Here, we provide a protocol for single-cell isolation and whole genome amplification, which includes the following stages: preparation of single-cell suspensions from blood or bone marrow samples and cancer cell lines; their characterization on the basis of morphology, interphase fluorescent in situ hybridization pattern and antibody staining; isolation of single cells by either laser microdissection or micromanipulation; and unbiased amplification of single-cell genomes by either linker-adaptor PCR or GenomePlex library technology. This protocol provides a suitable template to screen for chromosomal copy number changes by conventional comparative genomic hybridization (CGH) or array CGH. Expected results include the generation of several micrograms of DNA from single cells, which can be used for CGH or other analyses, such as sequencing. Using linker-adaptor PCR or GenomePlex library technology, the protocol takes 72 or 30 h, respectively.

Collaboration


Dive into the Jochen B. Geigl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Heitzer

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Peter Ulz

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Martina Auer

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald Hoefler

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Gunda Pristauz

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Jelena Belic

Medical University of Graz

View shared research outputs
Researchain Logo
Decentralizing Knowledge