Jochen Blumberger
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jochen Blumberger.
Journal of Chemical Physics | 2014
Adam Kubas; Felix Hoffmann; Alexander Heck; Harald Oberhofer; Marcus Elstner; Jochen Blumberger
We introduce a database (HAB11) of electronic coupling matrix elements (H(ab)) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute H(ab) values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Marian Breuer; Kevin M. Rosso; Jochen Blumberger
Significance Certain bacteria use complex assemblies of multiheme proteins to shuttle electrons from the inside of the cell over distances exceeding 100 Å to extracellular substrates. Recently, the first crystal structure of a representative deca-heme protein was solved, but the mechanism of electron conduction remains difficult to probe experimentally. Here we provide detailed molecular-level insight into the kinetics and thermodynamics of charge conduction in this biological wire using high-performance computational tools. Our study reveals an evolutionary design principle of significance to an entire class of heme proteins involved in mediating electron flow between bacterial cells and their environment, a phenomenon both bearing great geochemical importance and opening up a multitude of potential biotechnological applications. The naturally widespread process of electron transfer from metal reducing bacteria to extracellular solid metal oxides entails unique biomolecular machinery optimized for long-range electron transport. To perform this function efficiently, microorganisms have adapted multiheme c-type cytochromes to arrange heme cofactors into wires that cooperatively span the cellular envelope, transmitting electrons along distances greater than 100 Å. Implications and opportunities for bionanotechnological device design are self-evident. However, at the molecular level, how these proteins shuttle electrons along their heme wires, navigating intraprotein intersections and interprotein interfaces efficiently, remains a mystery thus far inaccessible to experiment. To shed light on this critical topic, we carried out extensive quantum mechanics/molecular mechanics simulations to calculate stepwise heme-to-heme electron transfer rates in the recently crystallized outer membrane deca-heme cytochrome MtrF. By solving a master equation for electron hopping, we estimate an intrinsic, maximum possible electron flux through solvated MtrF of 104–105 s−1, consistent with recently measured rates for the related multiheme protein complex MtrCAB. Intriguingly, our calculations show that the rapid electron transport through MtrF is the result of a clear correlation between heme redox potential and the strength of electronic coupling along the wire: thermodynamically uphill steps occur only between electronically well-connected stacked heme pairs. This observation suggests that the protein evolved to harbor low-potential hemes without slowing down electron flow. These findings are particularly profound in light of the apparently well-conserved staggered cross-heme wire structural motif in functionally related outer membrane proteins.
Journal of Chemical Physics | 2010
Harald Oberhofer; Jochen Blumberger
We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q(-)) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, (<|H(ab)|(2)>)(1/2)=6.7 mH, is significantly higher than the value obtained for the minimum energy structure, |H(ab)|=3.8 mH. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q(-) in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.
Journal of Chemical Physics | 2009
Harald Oberhofer; Jochen Blumberger
We present a plane-wave basis set implementation of charge constrained density functional molecular dynamics (CDFT-MD) for simulation of electron transfer reactions in condensed phase systems. Following the earlier work of Wu and Van Voorhis [Phys. Rev. A 72, 024502 (2005)], the density functional is minimized under the constraint that the charge difference between donor and acceptor is equal to a given value. The classical ion dynamics is propagated on the Born-Oppenheimer surface of the charge constrained state. We investigate the dependence of the constrained energy and of the energy gap on the definition of the charge and present expressions for the constraint forces. The method is applied to the Ru2+-Ru3+ electron self-exchange reaction in aqueous solution. Sampling the vertical energy gap along CDFT-MD trajectories and correcting for finite size effects, a reorganization free energy of 1.6 eV is obtained. This is 0.1-0.2 eV lower than a previous estimate based on a continuum model for solvation. The smaller value for the reorganization free energy can be explained by the fact that the Ru-O distances of the divalent and trivalent Ru hexahydrates are predicted to be more similar in the electron transfer complex than for the separated aqua ions.
Journal of the Royal Society Interface | 2015
Marian Breuer; Kevin M. Rosso; Jochen Blumberger; Julea N. Butt
Multi-haem cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometres. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-haem cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-haem cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward, there are opportunities to engage multi-haem cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence, it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-haem cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-haem cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.
Journal of the American Chemical Society | 2010
Varomyalin Tipmanee; Harald Oberhofer; Mina Park; Kwang S. Kim; Jochen Blumberger
The acceleration of electron transfer (ET) rates in redox proteins relative to aqueous solutes can be attributed to the proteins ability to reduce the nuclear response or reorganization upon ET, while maintaining sufficiently high electronic coupling. Quantitative predictions of reorganization free energy remain a challenge, both experimentally and computationally. Using density functional calculations and molecular dynamics simulation with an electronically polarizable force field, we report reorganization free energies for intraprotein ET in four heme-containing ET proteins that differ in their protein fold, hydrophilicity, and solvent accessibility of the electron-accepting group. The reorganization free energies for ET from the heme cofactors of cytochrome c and b(5) to solvent exposed Ru-complexes docked to histidine residues at the surface of these proteins fall within a narrow range of 1.2-1.3 eV. Reorganization free energy is significantly lowered in a designed 4-helix bundle protein where both redox active cofactors are protected from the solvent. For all ET reactions investigated, the major components of reorganization are the solvent and the protein, with the solvent contributing close to or more than 50% of the total. In three out of four proteins, the protein reorganization free energy can be viewed as a collective effect including many residues, each of which contributing a small fraction. These results have important implications for the design of artificial electron transport proteins. They suggest that reorganization free energy may in general not be effectively controlled by single point mutations, but to a large extent by the degree of solvent exposure of the ionizable cofactors.
Journal of Chemical Physics | 2005
Yoshitaka Tateyama; Jochen Blumberger; Michiel Sprik; Ivano Tavernelli
The thermochemistry of the RuO(4)(2-)+MnO(4)(-)-->RuO(4)(-)+MnO(4)(2-) redox reaction in aqueous solution is studied by separate density-functional-based ab initio molecular-dynamics simulations of the component half reactions RuO(4)(2-)-->RuO(4)(-)+e(-) and MnO(4)(2-)-->MnO(4)(-)+e(-). We compare the results of a recently developed grand-canonical method for the computation of oxidation free energies to the predictions by the energy-gap relations of the Marcus theory that can be assumed to apply to these reactions. The calculated redox potentials are in good agreement. The subtraction of the half-reaction free energies gives an estimate of the free energy of the full reaction. The result obtained from the grand-canonical method is -0.4 eV, while the application of the Marcus theory gives -0.3 eV. These should be compared to the experimental value of 0.0 eV. Size effects, in response to increasing the number of water molecules in the periodic model system from 30 to 48, are found to be small ( approximately 0.1 eV). The link to the Marcus theory also has enabled us to compute reorganization free energies for oxidation. For both the MnO(4)(2-) and RuO(4)(2-) redox reactions we find the same reorganization free energy of 0.8 eV (1.0 eV in the larger system). The results for the free energies and further analysis of solvation and electronic structure confirm that these two tetrahedral oxoanions show very similar behavior in solution in spite of the central transition-metal atoms occupying a different row and column in the periodic table.
Nature Chemistry | 2014
Vincent Fourmond; Claudio Greco; Kateryna Sybirna; Carole Baffert; Po-hung Wang; Pierre Ezanno; Marco Montefiori; Maurizio Bruschi; Isabelle Meynial-Salles; Philippe Soucaille; Jochen Blumberger; Hervé Bottin; Luca De Gioia; Christophe Léger
Nature is a valuable source of inspiration in the design of catalysts, and various approaches are used to elucidate the mechanism of hydrogenases, the enzymes that oxidize or produce H2. In FeFe hydrogenases, H2 oxidation occurs at the H-cluster, and catalysis involves H2 binding on the vacant coordination site of an iron centre. Here, we show that the reversible oxidative inactivation of this enzyme results from the binding of H2 to coordination positions that are normally blocked by intrinsic CO ligands. This flexibility of the coordination sphere around the reactive iron centre confers on the enzyme the ability to avoid harmful reactions under oxidizing conditions, including exposure to O2. The versatile chemistry of the diiron cluster in the natural system might inspire the design of novel synthetic catalysts for H2 oxidation.
Journal of Chemical Theory and Computation | 2011
Martina Mangold; Leslie Rolland; Francesca Costanzo; Michiel Sprik; Marialore Sulpizi; Jochen Blumberger
Absolute pKa values of the amino acid side chains of arginine, aspartate, cysteine, histidine, and tyrosine; the C- and N-terminal group of tyrosine; and the tryptophan radical cation are calculated using a revised density functional based molecular dynamics simulation technique introduced previously [ Cheng , J. ; Sulpizi , M. ; Sprik , M. J. Chem. Phys. 2009 , 131 , 154504 ]. In the revised scheme, acid deprotonation is considered as a dissociation rather than a proton transfer reaction, and a correction term for treating the proton as a hydronium ion is suggested. The acidity constants of the amino acids are obtained from the vertical energy gaps for removal or insertion of the acidic proton and the computed solvation free energy of the proton. The unsigned mean error relative to experimental results is 2.1 pKa units with a maximum error of 4.0 pKa units. The estimated mean statistical uncertainty due to the finite length of the trajectories is ±1.1 pKa units. The solvation structures of the protonated and deprotonated amino acids are analyzed in terms of radial distribution functions, which can serve as reference data for future force field developments.
Journal of the American Chemical Society | 2012
Marian Breuer; Piotr Zarzycki; Jochen Blumberger; Kevin M. Rosso
Electron-transporting multi-heme cytochromes are essential to the metabolism of microbes that inhabit soils and carry out important biogeochemical processes. Recently the first crystal structure of a prototype bacterial deca-heme cytochrome (MtrF) has been resolved and its electrochemistry characterized. However, the molecular details of electron transport along heme chains in the cytochrome are difficult to access via experiment due to the nearly identical chemical nature of the heme cofactors. Here we employ large-scale molecular dynamics simulations to compute the redox potentials of the 10 hemes of MtrF in aqueous solution. We find that as a whole they fall within a range of ~0.3 V, in agreement with experiment. Individual redox potentials give rise to a free energy profile for electron transport that is approximately symmetric with respect to the center of the protein. Our calculations indicate that there is no significant potential bias along the orthogonal octa- and tetra-heme chains, suggesting that under aqueous conditions MtrF is a nearly reversible two-dimensional conductor.