Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jochen Bogs is active.

Publication


Featured researches published by Jochen Bogs.


Journal of Experimental Botany | 2011

Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway

Imène Hichri; François Barrieu; Jochen Bogs; Christian Kappel; Serge Delrot; Virginie Lauvergeat

Flavonoids are secondary metabolites involved in several aspects of plant development and defence. They colour fruits and flowers, favouring seed and pollen dispersal, and contribute to plant adaptation to environmental conditions such as cold or UV stresses, and pathogen attacks. Because they affect the quality of flowers (for horticulture), fruits and vegetables, and their derivatives (colour, aroma, stringency, etc.), flavonoids have a high economic value. Furthermore, these compounds possess pharmaceutical properties extremely attractive for human health. Thanks to easily detectable mutant phenotypes, such as modification of petal pigmentation and seeds exhibiting transparent testa, the enzymes involved in the flavonoid biosynthetic pathway have been characterized in several plant species. Conserved features as well as specific differences have been described. Regulation of structural gene expression appears tightly organized in a spatial and temporal way during plant development, and is orchestrated by a ternary complex involving transcription factors from the R2R3-MYB, basic helix-loop-helix (bHLH), and WD40 classes. This MYB-bHLH-WD40 (MBW) complex regulates the genes that encode enzymes specifically involved in the late steps of the pathway leading to the biosynthesis of anthocyanins and condensed tannins. Although several genes encoding transcription factors from these three families have been identified, many gaps remain in our understanding of the regulation of this biosynthetic pathway, especially about the respective roles of bHLH and WD40 proteins. A better knowledge of the regulatory mechanisms of the flavonoid pathway is likely to favour the development of new biotechnological tools for the generation of value-added plants with optimized flavonoid content.


Plant Physiology | 2007

The Grapevine Transcription Factor VvMYBPA1 Regulates Proanthocyanidin Synthesis during Fruit Development

Jochen Bogs; Felix W. Jaffé; Adam M. Takos; Amanda R. Walker; Simon P. Robinson

Proanthocyanidins (PAs; or condensed tannins) can protect plants against herbivores, contribute to the taste of many fruits, and act as dietary antioxidants beneficial for human health. We have previously shown that in grapevine (Vitis vinifera) PA synthesis involves both leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR). Here we report the characterization of a grapevine MYB transcription factor VvMYBPA1, which controls expression of PA pathway genes including both LAR and ANR. Expression of VvMYBPA1 in grape berries correlated with PA accumulation during early berry development and in seeds. In a transient assay, VvMYBPA1 activated the promoters of LAR and ANR, as well as the promoters of several of the general flavonoid pathway genes. VvMYBPA1 did not activate the promoter of VvUFGT, which encodes the anthocyanin-specific enzyme UDP-glucose:flavonoid-3-O-glucosyltransferase, suggesting VvMYBPA1 is specific to regulation of PA biosynthesis in grapes. The Arabidopsis (Arabidopsis thaliana) MYB transcription factor TRANSPARENT TESTA2 (TT2) regulates PA synthesis in the seed coat of Arabidopsis. By complementing the PA-deficient seed phenotype of the Arabidopsis tt2 mutant with VvMYBPA1, we confirmed the function of VvMYBPA1 as a transcriptional regulator of PA synthesis. In contrast to ectopic expression of TT2 in Arabidopsis, constitutive expression of VvMYBPA1 resulted in accumulation of PAs in cotyledons, vegetative meristems, leaf hairs, and roots in some of the transgenic seedlings. To our knowledge, this is the first report of a MYB factor that controls genes of the PA pathway in fruit, including both LAR and ANR, and this single MYB factor can induce ectopic PA accumulation in Arabidopsis.


Plant Physiology | 2005

Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves.

Jochen Bogs; Mark O. Downey; John S. Harvey; Anthony R. Ashton; Gregory J. Tanner; Simon P. Robinson

Proanthocyanidins (PAs), also called condensed tannins, can protect plants against herbivores and are important quality components of many fruits. Two enzymes, leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR), can produce the flavan-3-ol monomers required for formation of PA polymers. We isolated and functionally characterized genes encoding both enzymes from grapevine (Vitis vinifera L. cv Shiraz). ANR was encoded by a single gene, but we found two highly related genes encoding LAR. We measured PA content and expression of genes encoding ANR, LAR, and leucoanthocyanidin dioxygenase in grape berries during development and in grapevine leaves, which accumulated PA throughout leaf expansion. Grape flowers had high levels of PA, and accumulation continued in skin and seeds from fruit set until the onset of ripening. VvANR was expressed throughout early flower and berry development, with expression increasing after fertilization. It was expressed in berry skin and seeds until the onset of ripening, and in expanding leaves. The genes encoding LAR were expressed in developing fruit, particularly in seeds, but had low expression in leaves. The two LAR genes had different patterns of expression in skin and seeds. During grape ripening, PA levels decreased in both skin and seeds, and expression of genes encoding ANR and LAR were no longer detected. The results indicate that PA accumulation occurs early in grape development and is completed when ripening starts. Both ANR and LAR contribute to PA synthesis in fruit, and the tissue and temporal-specific regulation of the genes encoding ANR and LAR determines PA accumulation and composition during grape berry development.


Plant Physiology | 2008

The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries.

Laurent G. Deluc; Jochen Bogs; Amanda R. Walker; Thilia Ferrier; Alain Decendit; Jean-Michel Mérillon; Simon P. Robinson; François Barrieu

Among the dramatic changes occurring during grape berry (Vitis vinifera) development, those affecting the flavonoid pathway have provoked a number of investigations in the last 10 years. In addition to producing several compounds involved in the protection of the berry and the dissemination of the seeds, final products of this pathway also play a critical role in berry and wine quality. In this article, we describe the cloning and functional characterization of VvMYB5b, a cDNA isolated from a grape berry (V. vinifera ‘Cabernet Sauvignon’) library. VvMYB5b encodes a protein belonging to the R2R3-MYB family of transcription factors and displays significant similarity with VvMYB5a, another MYB factor recently shown to regulate flavonoid synthesis in grapevine. The ability of VvMYB5a and VvMYB5b to activate the grapevine promoters of several structural genes of the flavonoid pathway was confirmed by transient expression of the corresponding cDNAs in grape cells. Overexpression of VvMYB5b in tobacco (Nicotiana tabacum) leads to an up-regulation of genes encoding enzymes of the flavonoid pathway and results in the accumulation of anthocyanin- and proanthocyanidin-derived compounds. The ability of VvMYB5b to regulate particularly the anthocyanin and the proanthocyanidin pathways is discussed in relation to other recently characterized MYB transcription factors in grapevine. Taken together, data presented in this article give insight into the transcriptional mechanisms associated with the regulation of the flavonoid pathway throughout grape berry development.


Plant Physiology | 2009

The Grapevine R2R3-MYB Transcription Factor VvMYBF1 Regulates Flavonol Synthesis in Developing Grape Berries

Stefan Czemmel; Ralf Stracke; Bernd Weisshaar; Nicole Jane Cordon; Nilangani N. Harris; Amanda R. Walker; Simon P. Robinson; Jochen Bogs

Flavonols are important ultraviolet light protectants in many plants and contribute substantially to the quality and health-promoting effects of fruits and derived plant products. To study the regulation of flavonol synthesis in fruit, we isolated and characterized the grapevine (Vitis vinifera ‘Shiraz’) R2R3-MYB transcription factor VvMYBF1. Transient reporter assays established VvMYBF1 to be a specific activator of flavonol synthase1 (VvFLS1) and several other promoters of grapevine and Arabidopsis (Arabidopsis thaliana) genes involved in flavonol synthesis. Expression of VvMYBF1 in the Arabidopsis mutant myb12 resulted in complementation of its flavonol-deficient phenotype and confirmed the function of VvMYBF1 as a transcriptional regulator of flavonol synthesis. Transcript analysis of VvMYBF1 throughout grape berry development revealed its expression during flowering and in skins of ripening berries, which correlates with the accumulation of flavonols and expression of VvFLS1. In addition to its developmental regulation, VvMYBF1 expression was light inducible, implicating VvMYBF1 in the control of VvFLS1 transcription. Sequence analysis of VvMYBF1 and VvFLS1 indicated conserved putative light regulatory units in promoters of both genes from different cultivars. By analysis of the VvMYBF1 amino acid sequence, we identified the previously described SG7 domain and an additional sequence motif conserved in several plant MYB factors. The described motifs have been used to identify MYB transcription factors from other plant species putatively involved in the regulation of flavonol biosynthesis. To our knowledge, this is the first functional characterization of a light-inducible MYB transcription factor controlling flavonol synthesis in fruit.


Plant Physiology | 2005

Identification of the Flavonoid Hydroxylases from Grapevine and Their Regulation during Fruit Development

Jochen Bogs; Ali Ebadi; Debra McDavid; Simon P. Robinson

Flavonoids are important secondary metabolites in many fruits, and their hydroxylation pattern determines their color, stability, and antioxidant capacity. Hydroxylation of the B-ring of flavonoids is catalyzed by flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H), and may also require cytochrome b5. We report the identification of genes encoding F3′H, F3′5′H, and a putative cytochrome b5 from grapevine (Vitis vinifera L. cv Shiraz) and their transcriptional regulation in fruit. Functionality of the genes VvF3′H and VvF3′5′H1 was demonstrated by ectopic expression in petunia (Petunia hybrida), which altered flower color and flavonoid composition as expected. VvF3′H was expressed in grapes before flowering, when 3′-hydroxylated flavonols are made, and all three genes were expressed after flowering, when proanthocyanidins (PAs) are synthesized. In berry skin, expression of all three genes was low at the onset of ripening (véraison) but increased after véraison concomitant with the accumulation of 3′- and 3′,5′-hydroxylated anthocyanins. VvF3′H and VvCytoB5 were expressed in seeds but not VvF3′5′H1, consistent with the accumulation of 3′-hydroxylated PAs in this tissue. VvCytoB5 expression was correlated with expression of both VvF3′H and VvF3′5′H1 in the different grape tissues. In contrast to red grapes, where VvF3′H, VvF3′5′H1, and VvCytoB5 were highly expressed during ripening, the expression of VvF3′5′H1 and VvCytoB5 in white grapes during ripening was extremely low, suggesting a difference in transcriptional regulation. Our results show that temporal and tissue-specific expression of VvF3′H, VvF3′5′H1, and VvCytoB5 in grapes is coordinated with the accumulation of the respective hydroxylated flavonols and PAs, as well as anthocyanins. Understanding the regulation of flavonoid hydroxylases could be used to modify flavonoid composition of fruits.


Molecular Plant | 2010

The Basic Helix-Loop-Helix Transcription Factor MYC1 Is Involved in the Regulation of the Flavonoid Biosynthesis Pathway in Grapevine

Imène Hichri; Simon C. Heppel; Jérémy Pillet; Céline Léon; Stefan Czemmel; Serge Delrot; Virginie Lauvergeat; Jochen Bogs

Previous results indicated that in grapevine (Vitis vinifera), regulation of the flavonoid pathway genes by MYB transcription factors depends on their interaction with basic helix-loop-helix proteins (bHLHs). The present study describes the first functional characterization of a bHLH factor from grapevine named VvMYC1. This transcription factor is phylogenetically related to Arabidopsis bHLH proteins, which participate in the control of flavonoid biosynthesis and epidermal cell fate. Transient promoter and yeast two-hybrid assays demonstrated that VvMYC1 physically interacts with MYB5a, MYB5b, MYBA1/A2, and MYBPA1 to induce promoters of flavonoid pathway genes involved in anthocyanin and/or proanthocyanidin (PA) synthesis. Additionally, transient promoter assays revealed that VvMYC1 is involved in feedback regulation of its own expression. Transcript levels of VvMYC1 during berry development correlate with the synthesis of anthocyanins and PAs in skins and seeds of berries, suggesting that VvMYC1 is involved in the regulation of anthocyanins and PA synthesis in these organs. Likewise, transient expression of VvMYC1 and VvMYBA1 induces anthocyanin synthesis in grapevine suspension cells. These results suggest that VvMYC1 is part of the transcriptional cascade controlling anthocyanin and PA biosynthesis in grapevine.


The Plant Cell | 2013

The R2R3-MYB Transcription Factors MYB14 and MYB15 Regulate Stilbene Biosynthesis in Vitis vinifera

Janine Höll; Alessandro Vannozzi; Stefan Czemmel; Claudio D'Onofrio; Amanda R. Walker; Thomas Rausch; Margherita Lucchin; Paul K. Boss; Ian B. Dry; Jochen Bogs

This study reports the identification and functional characterization of two stress-inducible R2R3-MYB–type transcription factors, termed MYB14 and MYB15, which regulate the stilbene biosynthetic pathway in grapevine. Plant stilbenes are phytoalexins that accumulate in a small number of plant species, including grapevine (Vitis vinifera), in response to biotic and abiotic stresses and have been implicated in many beneficial effects on human health. In particular, resveratrol, the basic unit of all other complex stilbenes, has received widespread attention because of its cardio-protective, anticarcinogenic, and antioxidant properties. Although stilbene synthases (STSs), the key enzymes responsible for resveratrol biosynthesis, have been isolated and characterized from several plant species, the transcriptional regulation underlying stilbene biosynthesis is unknown. Here, we report the identification and functional characterization of two R2R3-MYB–type transcription factors (TFs) from grapevine, which regulate the stilbene biosynthetic pathway. These TFs, designated MYB14 and MYB15, strongly coexpress with STS genes, both in leaf tissues under biotic and abiotic stress and in the skin and seed of healthy developing berries during maturation. In transient gene reporter assays, MYB14 and MYB15 were demonstrated to specifically activate the promoters of STS genes, and the ectopic expression of MYB15 in grapevine hairy roots resulted in increased STS expression and in the accumulation of glycosylated stilbenes in planta. These results demonstrate the involvement of MYB14 and MYB15 in the transcriptional regulation of stilbene biosynthesis in grapevine.


Photosynthesis Research | 2005

Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana

Ricarda Jost; Lothar Altschmied; Elke Mareke Bloem; Jochen Bogs; Jonathan Gershenzon; Urs Hähnel; Robert Hänsch; Tanja Nicole Hartmann; Stanislav Kopriva; Cordula Kruse; Ralf R. Mendel; Jutta Papenbrock; Michael Reichelt; Heinz Rennenberg; Ewald Schnug; Ahlert Schmidt; Susanne Textor; Jim Tokuhisa; Andreas Wachter; Markus Wirtz; Thomas Rausch; Ruediger Hell

The treatment of Arabidopsis thaliana with methyl jasmonate was used to investigate the reaction of 2467 selected genes of primary and secondary metabolism by macroarray hybridization. Hierarchical cluster analysis allowed distinctions to be made between diurnally and methyl jasmonate regulated genes in a time course from 30 min to 24 h. 97 and 64 genes were identified that were up- or down-regulated more than 2–fold by methyl jasmonate, respectively. These genes belong to 18 functional categories of which sulfur-related genes were by far strongest affected. Gene expression and metabolite patterns of sulfur metabolism were analysed in detail, since numerous defense compounds contain oxidized or reduced sulfur. Genes encoding key reactions of sulfate reduction as well as of cysteine, methionine and glutathione synthesis were rapidly up-regulated, but none of the known sulfur-deficiency induced sulfate transporter genes. In addition, increased expression of genes of sulfur-rich defense proteins and of enzymes involved in glucosinolate metabolism was observed. In contrast, profiling of primary and secondary sulfur metabolites revealed only an increase in the indole glucosinolate glucobrassicin upon methyl jasmonate treatment. The observed rapid mRNA changes were thus regulated by a signal independent of the known sulfur deficiency response. These results document for the first time how comprehensively the regulation of sulfur-related genes and plant defense are connected. This interaction is discussed as a new approach to differentiate between supply- and demand-driven regulation of the sulfate assimilation pathway.


Protoplasma | 2012

R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine

Stefan Czemmel; Simon C. Heppel; Jochen Bogs

Flavonoids compose one of the most abundant and important subgroups of secondary metabolites with more than 6,000 compounds detected so far in higher plants. They are found in various compositions and concentrations in nearly all plant tissues. Besides the attraction of pollinators and dispersers to fruits and flowers, flavonoids also protect against a plethora of stresses including pathogen attack, wounding and UV irradiation. Flavonoid content and composition of fruits such as grapes, bilberries, strawberries and apples as well as food extracts such as green tea, wine and chocolate have been associated with fruit quality including taste, colour and health-promoting effects. To unravel the beneficial potentials of flavonoids on fruit quality, research has been focused recently on the molecular basis of flavonoid biosynthesis and regulation in economically important fruit-producing plants such as grapevine (Vitis vinifera L.). Transcription factors and genes encoding biosynthetic enzymes have been characterized, studies that set a benchmark for future research on the regulatory networks controlling flavonoid biosynthesis and diversity. This review summarizes recent advances in the knowledge of regulatory cascades involved in flavonoid biosynthesis in grapevine. Transcriptional regulation of flavonoid biosynthesis during berry development is highlighted, with a particular focus on MYB transcription factors as molecular clocks, key regulators and powerful biotechnological tools to identify novel pathway enzymes to optimize flavonoid content and composition in grapes.

Collaboration


Dive into the Jochen Bogs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda R. Walker

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Simon P. Robinson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Tomás Matus

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge