Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jochen Buck is active.

Publication


Featured researches published by Jochen Buck.


Cell | 1990

The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus

Eric J. Huang; Karl Nocka; David R. Beier; Tang-Yan Chu; Jochen Buck; Hans-Werner Lahm; Daniel Wellner; Philip Leder; Peter Besmer

Mutations at the steel locus (Sl) of the mouse affect the same cellular targets as mutations at the white spotting locus (W), which is allelic with the c-kit proto-oncogene. We show that KL, a hematopoietic growth factor obtained from conditioned medium of BALB/c 3T3 fibroblasts that stimulates the proliferation of mast cells and early erythroid progenitors, specifically binds to the c-kit receptor. The predicted amino acid sequence of isolated KL-specific cDNA clones suggests that KL is synthesized as an integral transmembrane protein. Linkage analysis maps the KL gene to the Sl locus on mouse chromosome 10, and KL sequences are deleted in the genome of the Sl mouse. These results indicate that the Sl locus encodes the ligand of the c-kit receptor, KL.


Cell Metabolism | 2009

Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation.

Rebeca Acín-Pérez; Eric Salazar; Margarita Kamenetsky; Jochen Buck; Lonny R. Levin; Giovanni Manfredi

Mitochondria constantly respond to changes in substrate availability and energy utilization to maintain cellular ATP supplies, and at the same time control reactive oxygen radical (ROS) production. Reversible phosphorylation of mitochondrial proteins has been proposed to play a fundamental role in metabolic homeostasis, but very little is known about the signaling pathways involved. We show here that protein kinase A (PKA) regulates ATP production by phosphorylation of mitochondrial proteins, including subunits of cytochrome c oxidase. The cyclic AMP (cAMP), which activates mitochondrial PKA, does not originate from cytoplasmic sources but is generated within mitochondria by the carbon dioxide/bicarbonate-regulated soluble adenylyl cyclase (sAC) in response to metabolically generated carbon dioxide. We demonstrate for the first time the existence of a CO(2)-HCO(3)(-)-sAC-cAMP-PKA (mito-sAC) signaling cascade wholly contained within mitochondria, which serves as a metabolic sensor modulating ATP generation and ROS production in response to nutrient availability.


Pharmacogenetics | 2004

A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily.

Rebecca Blanchard; Robert R. Freimuth; Jochen Buck; Richard M. Weinshilboum; Michael W.H. Coughtrie

A nomenclature system for the cytosolic sulfotransferase (SULT) superfamily has been developed. The nomenclature guidelines were applied to 65 SULT cDNAs and 18 SULT genes that were characterized from eukaryotic organisms. SULT cDNA and gene sequences were identified by querying the GenBank databases and from published reports of their identification and characterization. These sequences were evaluated and named on the basis of encoded amino acid sequence identity and, in a few cases, a necessity to maintain historical naming convention. Family members share at least 45% amino acid sequence identity whereas subfamily members are at least 60% identical. cDNAs which encode amino acid sequences of at least 97% identity to each other were assigned identical isoform names. We also attempted to categorize orthologous enzymes between various species, where these have been identified, and the nomenclature includes a species descriptor. We present recommendations for the naming of allelic variants of SULT genes and their derived allozymes arising from single nucleotide polymorphisms and other genetic variation. The superfamily currently comprises 47 mammalian SULT isoforms, one insect isoform and eight plant enzymes, and collectively these sequences represent nine separate SULT families and 14 subfamilies. It is hoped that this nomenclature system will be widely adopted and that, as novel SULTs are identified and characterized, investigators will name their discoveries according to these guidelines.


The FASEB Journal | 2002

Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains

Jonathan H. Zippin; Yanqiu Chen; Patrick C. Nahirney; Margarita Kamenetsky; Mark S. Wuttke; Donald A. Fischman; Lonny R. Levin; Jochen Buck

Intracellular targets of the ubiquitous second messenger cAMP are located at great distances from the most widely studied source of cAMP, the G protein responsive transmembrane adenylyl cyclases. We previously identified an alternative source of cAMP in mammalian cells lacking transmembrane spanning domains, the “soluble” adenylyl cyclase (sAC). We now demonstrate that sAC is distributed in specific subcellular compartments: mitochondria, centrioles, mitotic spindles, mid‐bodies, and nuclei, all of which contain cAMP targets. Distribution at these intracellular sites proves that adenylyl cyclases are in close proximity to all cAMP effectors, suggesting a model in which local concentrations of cAMP are regulated by individual adenylyl cyclases targeted to specific microdomains throughout the cell.


The Journal of Neuroscience | 2005

Mutant Superoxide Dismutase 1 Forms Aggregates in the Brain Mitochondrial Matrix of Amyotrophic Lateral Sclerosis Mice

Chetan Vijayvergiya; M. Flint Beal; Jochen Buck; Giovanni Manfredi

An increasing body of evidence suggests that mitochondrial dysfunction plays an important role in the pathogenesis of familial amyotrophic lateral sclerosis associated with “gain of function” mutations in Cu/Zn superoxide dismutase 1 (SOD1). SOD1 is mostly a cytosolic protein, but a portion of SOD1 is localized in mitochondria of patients with familial amyotrophic lateral sclerosis and transgenic mouse models of the disease. Despite the finding that mutant SOD1 localizes in mitochondria, the pathogenic significance of the mitochondrial mutant SOD1 remains to be elucidated. Here, we demonstrate that both wild-type and mutant human SOD1 accumulate in brain mitochondria of transgenic mice and that SOD1 displays a very complex intramitochondrial compartmentalization. For the first time, we show that, in addition to being in the mitochondrial outer membrane and intermembrane space, SOD1 is also localized in the mitochondrial matrix. Importantly, we show that aberrant SOD1 macromolecular aggregates are formed in the matrix of brain mitochondria. This suggests that mutant SOD1 in the brain mitochondrial matrix is misfolded and prone to aggregation, which may contribute to selective neuronal degeneration.


Neuron | 2012

Metabolic Communication between Astrocytes and Neurons via Bicarbonate-Responsive Soluble Adenylyl Cyclase

Hyun B. Choi; Grant R. J. Gordon; Ning Zhou; Chao Tai; Ravi L. Rungta; Jennifer Martinez; Teresa A. Milner; Jae K. Ryu; James G. McLarnon; Martin Tresguerres; Lonny R. Levin; Jochen Buck; Brian A. MacVicar

Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO₃⁻) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO₃⁻ entry via the electrogenic NaHCO₃ cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K⁺](ext) and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons.


Eukaryotic Cell | 2006

Cryptococcus neoformans Senses CO2 through the Carbonic Anhydrase Can2 and the Adenylyl Cyclase Cac1

Estelle Mogensen; Guilhem Janbon; James Chaloupka; Clemens Steegborn; Man Shun Fu; Frédérique Moyrand; Torsten Klengel; David S. Pearson; Michael A. Geeves; Jochen Buck; Lonny R. Levin; Fritz A. Mühlschlegel

ABSTRACT Cryptococcus neoformans, a fungal pathogen of humans, causes fatal meningitis in immunocompromised patients. Its virulence is mainly determined by the elaboration of a polysaccharide capsule surrounding its cell wall. During its life, C. neoformans is confronted with and responds to dramatic variations in CO2 concentrations; one important morphological change triggered by the shift from its natural habitat (0.033% CO2) to infected hosts (5% CO2) is the induction of capsule biosynthesis. In cells, CO2 is hydrated to bicarbonate in a spontaneous reaction that is accelerated by carbonic anhydrases. Here we show that C. neoformans contains two β-class carbonic anhydrases, Can1 and Can2. We further demonstrate that CAN2, but not CAN1, is abundantly expressed and essential for the growth of C. neoformans in its natural environment, where CO2 concentrations are limiting. Structural studies reveal that Can2 forms a homodimer in solution. Our data reveal Can2 to be the main carbonic anhydrase and suggest a physiological role for bicarbonate during C. neoformans growth. Bicarbonate directly activates the C. neoformans Cac1 adenylyl cyclase required for capsule synthesis. We show that this specific activation is optimal at physiological pH.


Journal of Cell Biology | 2004

Bicarbonate-responsive "soluble" adenylyl cyclase defines a nuclear cAMP microdomain.

Jonathan H. Zippin; Jeanne Farrell; David R Huron; Margarita Kamenetsky; Kenneth C. Hess; Donald A. Fischman; Lonny R. Levin; Jochen Buck

Bicarbonate-responsive “soluble” adenylyl cyclase resides, in part, inside the mammalian cell nucleus where it stimulates the activity of nuclear protein kinase A to phosphorylate the cAMP response element binding protein (CREB). The existence of this complete and functional, nuclear-localized cAMP pathway establishes that cAMP signals in intracellular microdomains and identifies an alternate pathway leading to CREB activation.


Molecular Reproduction and Development | 2000

Specific expression of soluble adenylyl cyclase in male germ cells

Meeghan L. Sinclair; Xiangyuan Wang; Melissa Mattia; Marco Conti; Jochen Buck; Debra J. Wolgemuth; Lonny R. Levin

The cAMP signaling pathway is an important mediator of extracellular signals in organisms from prokaryotes to higher eukaryotes. In mammals two types of adenylyl cyclase synthesize cAMP; a ubiquitous family of transmembrane isoforms regulated by G proteins in response to extracellular signals, and a recently isolated soluble enzyme insensitive to heterotrimeric G protein modulation. Using the very sensitive reverse transcription‐polymerase chain reaction (RT‐PCR), soluble adenylyl cyclase (sAC) expression is detectable in almost all tissues examined; however, Northern analysis and in situ hybridization indicate that high levels of sAC message are unique to male germ cells. Elevated levels of sAC mRNA are first observed in pachytene spermatocytes and expression increases through spermiogenesis. The accumulation of high levels of message in round spermatids suggests sAC protein plays an important role in the generation of cAMP in spermatozoa, implying possible roles in sperm maturation through the epididymis, capacitation, hypermotility, and/or the acrosome reaction. Mol. Reprod. Dev. 56:6–11, 2000.


Trends in Endocrinology and Metabolism | 2001

CO2/HCO3--responsive soluble adenylyl cyclase as a putative metabolic sensor

Jonathan H. Zippin; Lonny R. Levin; Jochen Buck

Cyclic AMP (cAMP) is an evolutionarily conserved regulator of metabolism. Recently, we identified a novel mammalian source of cAMP - soluble adenylyl cyclase (sAC) - that is regulated directly by bicarbonate ions (HCO(3)(-)). As the concentration of HCO(3)(-) reflects cellular levels of carbon dioxide (CO(2)), energy-generating metabolic processes (which increase intracellular CO(2)) are poised to activate bicarbonate-responsive sAC. This direct link between metabolic activity, sAC and cAMP could represent an evolutionarily conserved mechanism of metabolic feedback regulation.

Collaboration


Dive into the Jochen Buck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Hämmerling

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge