Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jochen C. Hartner is active.

Publication


Featured researches published by Jochen C. Hartner.


Nature | 2000

Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2

Miyoko Higuchi; Stefan Maas; Frank Nicolai Single; Jochen C. Hartner; Andrej Rozov; Nail Burnashev; Dirk Feldmeyer; Rolf Sprengel; Peter H. Seeburg

RNA editing by site-selective deamination of adenosine to inosine alters codons and splicing in nuclear transcripts, and therefore protein function. ADAR2 (refs 7, 8) is a candidate mammalian editing enzyme that is widely expressed in brain and other tissues, but its RNA substrates are unknown. Here we have studied ADAR2-mediated RNA editing by generating mice that are homozygous for a targeted functional null allele. Editing in ADAR2-/- mice was substantially reduced at most of 25 positions in diverse transcripts; the mutant mice became prone to seizures and died young. The impaired phenotype appeared to result entirely from a single underedited position, as it reverted to normal when both alleles for the underedited transcript were substituted with alleles encoding the edited version exonically. The critical position specifies an ion channel determinant, the Q/R site, in AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptor GluR-B pre-messenger RNA. We conclude that this transcript is the physiologically most important substrate of ADAR2.


Science Translational Medicine | 2012

MicroRNA 21 promotes fibrosis of the kidney by silencing metabolic pathways

B. Nelson Chau; Cuiyan Xin; Jochen C. Hartner; Shuyu Ren; Ana P. Castano; Geoffrey Linn; Jian Li; Phong T. Tran; Vivek Kaimal; Xinqiang Huang; Aaron N. Chang; Shenyang Li; Aarti Kalra; Monica Grafals; Didier Portilla; Deidre A. MacKenna; Stuart H. Orkin; Jeremy S. Duffield

MicroRNA-21 contributes to fibrosis in the kidney by posttranscriptionally regulating lipid metabolism genes. Defeating Fibrosis Although small—just 22 nucleotides in length—microRNA-21 (miR-21) packs a mighty punch, posttranscriptionally regulating the expression of many genes. Furthermore, miR-21 dysregulation has been linked to cardiac disease and cancer. Now, Chau et al. show that dysregulated miR-21 also contributes to kidney fibrosis, an inappropriate wound-healing response that promotes organ failure. The authors first identified miRNAs that were up-regulated in two mouse models of kidney injury. On the basis of preliminary analyses, Chau et al. focused on miR-21. In mice, miR-21 is up-regulated in the kidney soon after injury, before fibrosis appears. Moreover, miR-21 is up-regulated in human kidneys from patients with problems such as acute kidney injury. Although mice that lack miR-21 are healthy and display relatively normal gene expression in the kidney, after injury, a derepressed set of miR-21 target mRNAs becomes apparent, and they develop much less fibrosis than their littermates that express miR-21. In normal mice, inhibition of miR-21 with complementary oligonucleotides likewise reduces kidney fibrosis after injury. To understand how miR-21 amplifies kidney fibrosis, the authors examined kidney gene expression profiles in mice with and without miR-21 after kidney injury. About 700 genes were derepressed in kidneys from mice without miR-21; surprisingly, genes involved in metabolic pathways—particularly involving fatty acid and lipid oxidation—were among the up-regulated genes, whereas those involved in immune or cell proliferation pathways were not. One derepressed gene, encoding peroxisome proliferator–activated receptor α (PPARα), a regulator of lipid metabolism, is a direct target of miR-21. Overexpression of PPARα in the kidney during injury inhibited fibrosis in mice; conversely, in mice that lacked PPARα, inhibition of miR-21 no longer protected against kidney fibrosis. The finding that miR-21 is a major player in kidney fibrosis suggests that drugs that inhibit miR-21, like the complementary oligonucleotides used in this study, might prove to be useful therapies in humans. Scarring of the kidney is a major public health concern, directly promoting loss of kidney function. To understand the role of microRNA (miRNA) in the progression of kidney scarring in response to injury, we investigated changes in miRNA expression in two kidney fibrosis models and identified 24 commonly up-regulated miRNAs. Among them, miR-21 was highly elevated in both animal models and in human transplanted kidneys with nephropathy. Deletion of miR-21 in mice resulted in no overt abnormality. However, miR-21−/− mice suffered far less interstitial fibrosis in response to kidney injury, a phenotype duplicated in wild-type mice treated with anti–miR-21 oligonucleotides. Global derepression of miR-21 target mRNAs was readily detectable in miR-21−/− kidneys after injury. Analysis of gene expression profiles up-regulated in the absence of miR-21 identified groups of genes involved in metabolic pathways, including the lipid metabolism pathway regulated by peroxisome proliferator–activated receptor-α (Pparα), a direct miR-21 target. Overexpression of Pparα prevented ureteral obstruction–induced injury and fibrosis. Pparα deficiency abrogated the antifibrotic effect of anti–miR-21 oligonucleotides. miR-21 also regulated the redox metabolic pathway. The mitochondrial inhibitor of reactive oxygen species generation Mpv17l was repressed by miR-21, correlating closely with enhanced oxidative kidney damage. These studies demonstrate that miR-21 contributes to fibrogenesis and epithelial injury in the kidney in two mouse models and is a candidate target for antifibrotic therapies.


Nature Immunology | 2009

ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling

Jochen C. Hartner; Carl R. Walkley; Jun Lu; Stuart H. Orkin

The deaminase ADAR1 edits adenosines in nuclear transcripts of nervous tissue and is required in the fetal liver of the developing mouse embryo. Here we show by inducible gene disruption in mice that ADAR1 is essential for maintenance of both fetal and adult hematopoietic stem cells. Loss of ADAR1 in hematopoietic stem cells led to global upregulation of type I and II interferon–inducible transcripts and rapid apoptosis. Our findings identify ADAR1 as an essential regulator of hematopoietic stem cell maintenance and suppressor of interferon signaling that may protect organisms from the deleterious effects of interferon activation associated with many pathological processes, including chronic inflammation, autoimmune disorders and cancer.


Journal of Immunology | 2011

MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity.

Thomas X. Lu; Jochen C. Hartner; Eunjin Lim; Victoria Fabry; Melissa K. Mingler; Eric T. Cole; Stuart H. Orkin; Bruce J. Aronow; Marc E. Rothenberg

An altered balance between Th1 and Th2 cytokines is responsible for a variety of immunoinflammatory disorders such as asthma, yet the role of posttranscriptional mechanisms, such as those mediated by microRNAs (miRs), in adjusting the relative magnitude and balance of Th cytokine expression have been largely unexplored. In this study, we show that miR-21 has a central role in setting a balance between Th1 and Th2 responses to Ags. Targeted ablation of miR-21 in mice led to reduced lung eosinophilia after allergen challenge, with a broadly reprogrammed immunoactivation transcriptome and significantly increased levels of the Th1 cytokine IFN-γ. Biological network-based transcriptome analysis of OVA-challenged miR-21−/− mice identified an unexpected prominent dysregulation of IL-12/IFN-γ pathways as the most significantly affected in the lungs, with a key role for miR-21 in IFN-γ signaling and T cell polarization, consistent with a functional miR-21 binding site in IL-12p35. In support of these hypotheses, miR-21 deficiency led dendritic cells to produce more IL-12 after LPS stimulation and OVA-challenged CD4+ T lymphocytes to produce increased IFN-γ and decreased IL-4. Further, loss of miR-21 significantly enhanced the Th1-associated delayed-type hypersensitivity cutaneous responses. Thus, our results define miR-21 as a major regulator of Th1 versus Th2 responses, defining a new mechanism for regulating polarized immunoinflammatory responses.


Current Opinion in Neurobiology | 2003

Regulation of ion channel/neurotransmitter receptor function by RNA editing.

Peter H. Seeburg; Jochen C. Hartner

RNA editing by select adenosine deamination (A-to-I editing) alters functional determinants in certain ion channels and neurotransmitter receptors in vertebrates and invertebrates. In most cases, edited and unedited versions of a given receptor/channel co-exist to expand the functional space of the receptor population. Recent studies have characterized K(+) channels in squid that are edited at multiple positions, revealed a role for Q/R site editing in AMPA receptor assembly, and demonstrated a link between serotonin levels and the extent of editing of a mammalian serotonin receptor.


Science | 2015

RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself

Brian J. Liddicoat; Robert Piskol; Alistair M. Chalk; Gokul Ramaswami; Miyoko Higuchi; Jochen C. Hartner; Jin Billy Li; Peter H. Seeburg; Carl R. Walkley

RNA editing helps identify cellular RNAs Adenosine bases in messenger RNA (mRNAs) can be enzymatically modified and changed into inosine bases. This RNA “editing” is mediated by adenosine deaminase acting on RNA (ADAR) enzymes. Liddicoat et al. show that the in vivo targets of the principal editing enzyme, ADAR1, are long double-stranded RNA (dsRNA) structures in noncoding portions of cellular mRNAs. ADAR1-directed editing of these cellular targets is critical to avoid activation of an immune response to dsRNA in the cytoplasm, because dsRNA is also a marker of viral infection. Science, this issue p. 1115 The principal RNA-editing enzyme modifies cellular RNAs to prevent their erroneous identification as foreign RNA. Adenosine-to-inosine (A-to-I) editing is a highly prevalent posttranscriptional modification of RNA, mediated by ADAR (adenosine deaminase acting on RNA) enzymes. In addition to RNA editing, additional functions have been proposed for ADAR1. To determine the specific role of RNA editing by ADAR1, we generated mice with an editing-deficient knock-in mutation (Adar1E861A, where E861A denotes Glu861→Ala861). Adar1E861A/E861A embryos died at ~E13.5 (embryonic day 13.5), with activated interferon and double-stranded RNA (dsRNA)–sensing pathways. Genome-wide analysis of the in vivo substrates of ADAR1 identified clustered hyperediting within long dsRNA stem loops within 3′ untranslated regions of endogenous transcripts. Finally, embryonic death and phenotypes of Adar1E861A/E861A were rescued by concurrent deletion of the cytosolic sensor of dsRNA, MDA5. A-to-I editing of endogenous dsRNA is the essential function of ADAR1, preventing the activation of the cytosolic dsRNA response by endogenous transcripts.


Circulation | 2012

MicroRNA-21 Integrates Pathogenic Signaling to Control Pulmonary Hypertension Results of a Network Bioinformatics Approach

Victoria N. Parikh; Richard C. Jin; Sabrina Rabello; Natali Gulbahce; Kevin P. White; Andrew Hale; Katherine A. Cottrill; Rahamthulla S. Shaik; Aaron B. Waxman; Ying-Yi Zhang; Bradley A. Maron; Jochen C. Hartner; Yuko Fujiwara; Stuart H. Orkin; Kathleen J. Haley; Albert-László Barabási; Joseph Loscalzo; Stephen Y. Chan

Background— Pulmonary hypertension (PH) is driven by diverse pathogenic etiologies. Owing to their pleiotropic actions, microRNA molecules are potential candidates for coordinated regulation of these disease stimuli. Methods and Results— Using a network biology approach, we identify microRNA associated with multiple pathogenic pathways central to PH. Specifically, microRNA-21 (miR-21) is predicted as a PH-modifying microRNA, regulating targets integral to bone morphogenetic protein (BMP) and Rho/Rho-kinase signaling as well as functional pathways associated with hypoxia, inflammation, and genetic haploinsufficiency of BMP receptor type 2. To validate these predictions, we have found that hypoxia and BMP receptor type 2 signaling independently upregulate miR-21 in cultured pulmonary arterial endothelial cells. In a reciprocal feedback loop, miR-21 downregulates BMP receptor type 2 expression. Furthermore, miR-21 directly represses RhoB expression and Rho-kinase activity, inducing molecular changes consistent with decreased angiogenesis and vasodilation. In vivo, miR-21 is upregulated in pulmonary tissue from several rodent models of PH and in humans with PH. On induction of disease in miR-21–null mice, RhoB expression and Rho-kinase activity are increased, accompanied by exaggerated manifestations of PH. Conclusions— A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in PH. Furthermore, this study highlights the unique utility of network biology for identifying disease-modifying microRNA in PH.Background— Pulmonary hypertension (PH) is driven by diverse pathogenic etiologies. Owing to their pleiotropic actions, microRNA molecules are potential candidates for coordinated regulation of these disease stimuli. Methods and Results— Using a network biology approach, we identify microRNA associated with multiple pathogenic pathways central to PH. Specifically, microRNA-21 (miR-21) is predicted as a PH-modifying microRNA, regulating targets integral to bone morphogenetic protein (BMP) and Rho/Rho-kinase signaling as well as functional pathways associated with hypoxia, inflammation, and genetic haploinsufficiency of BMP receptor type 2. To validate these predictions, we have found that hypoxia and BMP receptor type 2 signaling independently upregulate miR-21 in cultured pulmonary arterial endothelial cells. In a reciprocal feedback loop, miR-21 downregulates BMP receptor type 2 expression. Furthermore, miR-21 directly represses RhoB expression and Rho-kinase activity, inducing molecular changes consistent with decreased angiogenesis and vasodilation. In vivo, miR-21 is upregulated in pulmonary tissue from several rodent models of PH and in humans with PH. On induction of disease in miR-21 –null mice, RhoB expression and Rho-kinase activity are increased, accompanied by exaggerated manifestations of PH. Conclusions— A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in PH. Furthermore, this study highlights the unique utility of network biology for identifying disease-modifying microRNA in PH. # Clinical Perspective {#article-title-52}


Current Topics in Microbiology and Immunology | 2011

Role of ADARs in Mouse Development

Carl R. Walkley; Brian J. Liddicoat; Jochen C. Hartner

RNA editing by deamination of adenosine to inosine (A-to-I editing) is a physiologically important posttranscriptional mechanism that can regulate expression of genes by modifying their transcripts. A-to-I editing is mediated by adenosine deaminases acting on RNA (ADAR) that can catalytically exchange adenosines to inosines, with varying efficiency, depending on the structure of the RNA substrates. Significant progress in understanding the biological function of mammalian ADARs has been made in the past decade by the creation and analysis of gene-targeted mice with disrupted or modified ADAR alleles. These studies have revealed important roles of ADARs in neuronal and hematopoietic tissue during embryonic and postnatal stages of mouse development.


Circulation | 2012

MicroRNA-21 Integrates Pathogenic Signaling to Control Pulmonary HypertensionClinical Perspective

Victoria N. Parikh; Richard C. Jin; Sabrina Rabello; Natali Gulbahce; Kevin P. White; Andrew Hale; Katherine A. Cottrill; Rahamthulla S. Shaik; Aaron B. Waxman; Ying-Yi Zhang; Bradley A. Maron; Jochen C. Hartner; Yuko Fujiwara; Stuart H. Orkin; Kathleen J. Haley; Albert-László Barabási; Joseph Loscalzo; Stephen Y. Chan

Background— Pulmonary hypertension (PH) is driven by diverse pathogenic etiologies. Owing to their pleiotropic actions, microRNA molecules are potential candidates for coordinated regulation of these disease stimuli. Methods and Results— Using a network biology approach, we identify microRNA associated with multiple pathogenic pathways central to PH. Specifically, microRNA-21 (miR-21) is predicted as a PH-modifying microRNA, regulating targets integral to bone morphogenetic protein (BMP) and Rho/Rho-kinase signaling as well as functional pathways associated with hypoxia, inflammation, and genetic haploinsufficiency of BMP receptor type 2. To validate these predictions, we have found that hypoxia and BMP receptor type 2 signaling independently upregulate miR-21 in cultured pulmonary arterial endothelial cells. In a reciprocal feedback loop, miR-21 downregulates BMP receptor type 2 expression. Furthermore, miR-21 directly represses RhoB expression and Rho-kinase activity, inducing molecular changes consistent with decreased angiogenesis and vasodilation. In vivo, miR-21 is upregulated in pulmonary tissue from several rodent models of PH and in humans with PH. On induction of disease in miR-21–null mice, RhoB expression and Rho-kinase activity are increased, accompanied by exaggerated manifestations of PH. Conclusions— A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in PH. Furthermore, this study highlights the unique utility of network biology for identifying disease-modifying microRNA in PH.Background— Pulmonary hypertension (PH) is driven by diverse pathogenic etiologies. Owing to their pleiotropic actions, microRNA molecules are potential candidates for coordinated regulation of these disease stimuli. Methods and Results— Using a network biology approach, we identify microRNA associated with multiple pathogenic pathways central to PH. Specifically, microRNA-21 (miR-21) is predicted as a PH-modifying microRNA, regulating targets integral to bone morphogenetic protein (BMP) and Rho/Rho-kinase signaling as well as functional pathways associated with hypoxia, inflammation, and genetic haploinsufficiency of BMP receptor type 2. To validate these predictions, we have found that hypoxia and BMP receptor type 2 signaling independently upregulate miR-21 in cultured pulmonary arterial endothelial cells. In a reciprocal feedback loop, miR-21 downregulates BMP receptor type 2 expression. Furthermore, miR-21 directly represses RhoB expression and Rho-kinase activity, inducing molecular changes consistent with decreased angiogenesis and vasodilation. In vivo, miR-21 is upregulated in pulmonary tissue from several rodent models of PH and in humans with PH. On induction of disease in miR-21 –null mice, RhoB expression and Rho-kinase activity are increased, accompanied by exaggerated manifestations of PH. Conclusions— A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in PH. Furthermore, this study highlights the unique utility of network biology for identifying disease-modifying microRNA in PH. # Clinical Perspective {#article-title-52}


Circulation | 2012

MicroRNA-21 Integrates Pathogenic Signaling to Control Pulmonary HypertensionClinical Perspective: Results of a Network Bioinformatics Approach

Victoria N. Parikh; Richard C. Jin; Sabrina Rabello; Natali Gulbahce; Kevin P. White; Andrew Hale; Katherine A. Cottrill; Rahamthulla S. Shaik; Aaron B. Waxman; Ying-Yi Zhang; Bradley A. Maron; Jochen C. Hartner; Yuko Fujiwara; Stuart H. Orkin; Kathleen J. Haley; Albert-László Barabási; Joseph Loscalzo; Stephen Y. Chan

Background— Pulmonary hypertension (PH) is driven by diverse pathogenic etiologies. Owing to their pleiotropic actions, microRNA molecules are potential candidates for coordinated regulation of these disease stimuli. Methods and Results— Using a network biology approach, we identify microRNA associated with multiple pathogenic pathways central to PH. Specifically, microRNA-21 (miR-21) is predicted as a PH-modifying microRNA, regulating targets integral to bone morphogenetic protein (BMP) and Rho/Rho-kinase signaling as well as functional pathways associated with hypoxia, inflammation, and genetic haploinsufficiency of BMP receptor type 2. To validate these predictions, we have found that hypoxia and BMP receptor type 2 signaling independently upregulate miR-21 in cultured pulmonary arterial endothelial cells. In a reciprocal feedback loop, miR-21 downregulates BMP receptor type 2 expression. Furthermore, miR-21 directly represses RhoB expression and Rho-kinase activity, inducing molecular changes consistent with decreased angiogenesis and vasodilation. In vivo, miR-21 is upregulated in pulmonary tissue from several rodent models of PH and in humans with PH. On induction of disease in miR-21–null mice, RhoB expression and Rho-kinase activity are increased, accompanied by exaggerated manifestations of PH. Conclusions— A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in PH. Furthermore, this study highlights the unique utility of network biology for identifying disease-modifying microRNA in PH.Background— Pulmonary hypertension (PH) is driven by diverse pathogenic etiologies. Owing to their pleiotropic actions, microRNA molecules are potential candidates for coordinated regulation of these disease stimuli. Methods and Results— Using a network biology approach, we identify microRNA associated with multiple pathogenic pathways central to PH. Specifically, microRNA-21 (miR-21) is predicted as a PH-modifying microRNA, regulating targets integral to bone morphogenetic protein (BMP) and Rho/Rho-kinase signaling as well as functional pathways associated with hypoxia, inflammation, and genetic haploinsufficiency of BMP receptor type 2. To validate these predictions, we have found that hypoxia and BMP receptor type 2 signaling independently upregulate miR-21 in cultured pulmonary arterial endothelial cells. In a reciprocal feedback loop, miR-21 downregulates BMP receptor type 2 expression. Furthermore, miR-21 directly represses RhoB expression and Rho-kinase activity, inducing molecular changes consistent with decreased angiogenesis and vasodilation. In vivo, miR-21 is upregulated in pulmonary tissue from several rodent models of PH and in humans with PH. On induction of disease in miR-21 –null mice, RhoB expression and Rho-kinase activity are increased, accompanied by exaggerated manifestations of PH. Conclusions— A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in PH. Furthermore, this study highlights the unique utility of network biology for identifying disease-modifying microRNA in PH. # Clinical Perspective {#article-title-52}

Collaboration


Dive into the Jochen C. Hartner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl R. Walkley

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron B. Waxman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrew Hale

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Joseph Loscalzo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Y. Chan

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge