Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jochen Rutz is active.

Publication


Featured researches published by Jochen Rutz.


PLOS ONE | 2014

Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

Jasmina Makarević; Jochen Rutz; Eva Juengel; Silke Kaulfuss; Michael Reiter; Igor Tsaur; Georg Bartsch; Axel Haferkamp; Roman A. Blaheta

Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25–10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalins practical value as an anti-tumor drug.


Oncotarget | 2016

Sulforaphane inhibits proliferation and invasive activity of everolimus-resistant kidney cancer cells in vitro

Eva Juengel; Sebastian Maxeiner; Jochen Rutz; Saira Justin; Frederik C. Roos; Wael Khoder; Igor Tsaur; Karen Nelson; Wolf O. Bechstein; Axel Haferkamp; Roman A. Blaheta

Although the mechanistic target of rapamycin (mTOR) inhibitor, everolimus, has improved the outcome of patients with renal cell carcinoma (RCC), improvement is temporary due to the development of drug resistance. Since many patients encountering resistance turn to alternative/complementary treatment options, an investigation was initiated to evaluate whether the natural compound, sulforaphane (SFN), influences growth and invasive activity of everolimus-resistant (RCCres) compared to everolimus-sensitive (RCCpar) RCC cell lines in vitro. RCC cells were exposed to different concentrations of SFN and cell growth, cell proliferation, apoptosis, cell cycle, cell cycle regulating proteins, the mTOR-akt signaling axis, adhesion to human vascular endothelium and immobilized collagen, chemotactic activity, and influence on surface integrin receptor expression were investigated. SFN caused a significant reduction in both RCCres and RCCpar cell growth and proliferation, which correlated with an elevation in G2/M- and S-phase cells. SFN induced a marked decrease in the cell cycle activating proteins cdk1 and cyclin B and siRNA knock-down of cdk1 and cyclin B resulted in significantly diminished RCC cell growth. SFN also modulated adhesion and chemotaxis, which was associated with reduced expression of the integrin subtypes α5, α6, and β4. Distinct differences were seen in RCCres adhesion and chemotaxis (diminished by SFN) and RCCpar adhesion (enhanced by SFN) and chemotaxis (not influenced by SFN). Functional blocking of integrin subtypes demonstrated divergent action on RCC binding and invasion, depending on RCC cell sensitivity to everolimus. Therefore, SFN administration could hold potential for treating RCC patients with established resistance towards everolimus.


Phytomedicine | 2017

Sulforaphane as an adjunctive to everolimus counteracts everolimus resistance in renal cancer cell lines

Eva Juengel; Stephanie Euler; Sebastian Maxeiner; Jochen Rutz; Saira Justin; Frederik Roos; Wael Khoder; Karen Nelson; Wolf O. Bechstein; Roman A. Blaheta

BACKGROUND The mechanistic target of rapamycin (mTOR) inhibitors, everolimus and temsirolimus, have widened therapeutic options to treat renal cell carcinoma (RCC). However, chronic treatment with these inhibitors often induces resistance, leading to therapeutic failure. PURPOSE The natural compound, sulforaphane (SFN), was added to an everolimus based regime in vitro in the hopes of preventing resistance development. METHODS A panel of RCC cell lines (A498, Caki-1, KTCTL-26) was treated with everolimus or SFN or with an everolimus-SFN-combination, either short- (24h) or long-term (8 weeks), and cell growth, proliferation, apoptosis, and cell cycle phases were measured. The cell cycle regulating proteins cdk1, cdk2, cyclin A, cyclin B, akt and raptor (both total and activated) were also evaluated. RESULTS Short-term incubation with everolimus (1nM) or SFN (5µM) significantly reduced RCC cell growth. Additive effects on tumor growth and proliferation were evoked by the SFN-everolimus combination. Long-term everolimus-incubation led to resistance development in Caki-1 cells, evidenced by elevated growth and proliferation, associated with an increased percentage of G2/M (non-synchronized cell model) or S-phase (synchronized cell model) cells. Molecular analysis revealed up-regulation of the cdk1-cyclin B and cdk2-cyclin A axis, along with elevated phosphorylation of the mTOR sub-member, raptor. In contrast, resistance development was not observed with the long-term combination of SFN-everolimus. The combination suppressed Caki-1 growth and proliferation, and was associated with an increase in G0/G1-phase cells, diminished cdk1 and akt (both total and activated), cyclin B and raptor expression. CONCLUSION Adding SFN to an everolimus based RCC treatment regimen in vitro delayed resistance development observed with chronic everolimus monotherapy. Ongoing in vivo studies are necessary to verify the in vitro data.


PLOS ONE | 2014

Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

Jasmina Makarević; Jochen Rutz; Eva Juengel; Silke Kaulfuss; Igor Tsaur; Karen Nelson; Jesco Pfitzenmaier; Axel Haferkamp; Roman A. Blaheta

The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type.


Oncotarget | 2017

HDAC inhibition as a treatment concept to combat temsirolimus-resistant bladder cancer cells

Eva Juengel; Ramin Najafi; Jochen Rutz; Sebastian Maxeiner; Jasmina Makarević; Frederik C. Roos; Igor Tsaur; Axel Haferkamp; Roman A. Blaheta

Introduction Although the mechanistic target of rapamycin (mTOR) might be a promising molecular target to treat advanced bladder cancer, resistance develops under chronic exposure to an mTOR inhibitor (everolimus, temsirolimus). Based on earlier studies, we proposed that histone deacetylase (HDAC) blockade might circumvent resistance and investigated whether HDAC inhibition has an impact on growth of bladder cancer cells with acquired resistance towards temsirolimus. Results The HDAC inhibitor valproic acid (VPA) significantly inhibited growth, proliferation and caused G0/G1 phase arrest in RT112res and UMUC-3res. cdk1, cyclin B, cdk2, cyclin A and Skp1 p19 were down-regulated, p27 was elevated. Akt-mTOR signaling was deactivated, whereas acetylation of histone H3 and H4 in RT112res and UMUC-3res increased in the presence of VPA. Knocking down cdk2 or cyclin A resulted in a significant growth blockade of RT112res and UMUC-3res. Materials And Methods Parental (par) and resistant (res) RT112 and UMUC-3 cells were exposed to the HDAC inhibitor VPA. Tumor cell growth, proliferation, cell cycling and expression of cell cycle regulating proteins were then evaluated. siRNA blockade was used to investigate the functional impact of the proteins. Conclusions HDAC inhibition induced a strong response of temsirolimus-resistant bladder cancer cells. Therefore, the temsirolimus-VPA-combination might be an innovative strategy for bladder cancer treatment.


International Journal of Molecular Medicine | 2016

Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism

Eva Juengel; Masud Afschar; Jasmina Makarević; Jochen Rutz; Igor Tsaur; Jens Mani; Karen Nelson; Axel Haferkamp; Roman A. Blaheta

Information about the natural compound amygdalin, which is employed as an antitumor agent, is sparse and thus its efficacy remains controversial. In this study, to determine whether amygdalin exerts antitumor effects on renal cell carcinoma (RCC) cells, its impact on RCC metastatic activity was investigated. The RCC cell lines, Caki-1, KTC-26 and A498, were exposed to amygdalin from apricot kernels, and adhesion to human vascular endothelium, immobilized collagen or fibronectin was investigated. The influence of amygdalin on chemotactic and invasive activity was also determined, as was the influence of amygdalin on surface and total cellular α and β integrin expression, which are involved in metastasis. We noted that amygdalin caused significant reductions in chemotactic activity, invasion and adhesion to endothelium, collagen and fibronectin. Using FACScan analysis, we noted that amygdalin also induced reductions, particularly in integrins α5 and α6, in all three cell lines. Functional blocking of α5 resulted in significantly diminished adhesion of KTC-26 and A498 to collagen and also in decreased chemotactic behavior in all three cell lines. Blocking α6 integrin significantly reduced chemotactic activity in all three cell lines. Thus, we suggest that exposing RCC cells to amygdalin inhibits metastatic spread and is associated with downregulation of α5 and α6 integrins. Therefore, we posit that amygdalin exerts antitumor activity in vitro, and this may be linked to integrin regulation.


International Journal of Molecular Medicine | 2016

Amygdalin inhibits the growth of renal cell carcinoma cells in vitro

Eva Juengel; Anita Thomas; Jochen Rutz; Jasmina Makarević; Igor Tsaur; Karen Nelson; Axel Haferkamp; Roman A. Blaheta

Although amygdalin is used by many cancer patients as an antitumor agent, there is a lack of information on the efficacy and toxicity of this natural compound. In the present study, the inhibitory effect of amygdalin on the growth of renal cell carcinoma (RCC) cells was examined. Amygdalin (10 mg/ml) was applied to the RCC cell lines, Caki-1, KTC-26 and A498, for 24 h or 2 weeks. Untreated cells served as controls. Tumor cell growth and proliferation were determined using MTT and BrdU tests, and cell cycle phases were evaluated. Expression of the cell cycle activating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1 and D3 as well as of the cell cycle inhibiting proteins p19 and p27 was examined by western blot analysis. Surface expression of the differentiation markers E- and N-cadherin was also investigated. Functional blockade by siRNA was used to determine the impact of several proteins on tumor cell growth. Amygdalin treatment caused a significant reduction in RCC cell growth and proliferation. This effect was correlated with a reduced percentage of G2/M-phase RCC cells and an increased percentage of cells in the G0/1-phase (Caki-1 and A498) or cell cycle arrest in the S-phase (KTC-26). Furthermore, amygdalin induced a marked decrease in cell cycle activating proteins, in particular cdk1 and cyclin B. Functional blocking of cdk1 and cyclin B resulted in significantly diminished tumor cell growth in all three RCC cell lines. Aside from its inhibitory effects on growth, amygdalin also modulated the differentiation markers, E- and N-cadherin. Hence, exposing RCC cells to amygdalin inhibited cell cycle progression and tumor cell growth by impairing cdk1 and cyclin B expression. Moreover, we noted that amygdalin affected differentiation markers. Thus, we suggest that amygdalin exerted RCC antitumor effects in vitro.


Oncology Letters | 2017

Blocking integrin β1 decreases adhesion in chemoresistant urothelial cancer cell lines

Stefan Vallo; Jochen Rutz; Miriam Kautsch; Ria Winkelmann; Martin Michaelis; Felix Wezel; Georg Bartsch; Axel Haferkamp; Florian Rothweiler; Roman A. Blaheta; Jindrich Cinatl

Treatment failure in metastatic bladder cancer is commonly caused by acquisition of resistance to chemotherapy in association with tumor progression. Since alterations of integrins can influence the adhesive and invasive behaviors of urothelial bladder cancer cell lines, the present study aimed to evaluate the role of integrins in bladder cancer cells with acquired resistance to standard first-line chemotherapy with gemcitabine, and cisplatin. Therefore, four gemcitabine- and four cisplatin-resistant sublines out of a panel of four parental urothelial bladder cancer cell lines (TCC-SUP, HT1376, T24, and 5637) were used. Expression of integrin subunits α3, α5, α6, β1, β3, and β4 was detected using flow cytometry. Adhesion and chemotaxis were analyzed. For functional assays, integrin β1 was attenuated with a blocking antibody. In untreated cells, chemotaxis was upregulated in 3/4 gemcitabine-resistant sublines. In cisplatin-resistant cells, chemotaxis was enhanced in 2/4 cell lines. Acquired chemoresistance induced the upregulation of integrin β1 in all four tested gemcitabine-resistant sublines, as well as an upregulation in 3/4 cisplatin-resistant sublines compared with parental cell lines. Following the inhibition of integrin β1, adhesion to extracellular matrix components was downregulated in 3/4 gemcitabine-resistant sublines and in all four tested cisplatin-resistant sublines. Since integrin β1 is frequently upregulated in chemoresistant urothelial cancer cell lines and inhibition of integrin β1 may influence adhesion, further studies are warranted to evaluate integrin β1 as a potential therapeutic target for bladder cancer in vivo.


Oncotarget | 2018

Acquired resistance to temsirolimus is associated with integrin α7 driven chemotactic activity of renal cell carcinoma in vitro

Tobias Engl; Jochen Rutz; Sebastian Maxeiner; Sorel Fanguen; Eva Juengel; Sebastian Koschade; Frederik Roos; Wael Khoder; Igor Tsaur; Roman A. Blaheta

The mechanistic target of the rapamycin (mTOR) inhibitor, temsirolimus, has significantly improved the outcome of patients with renal cell carcinoma (RCC). However, development of temsirolimus-resistance limits its effect and metastatic progression subsequently recurs. Since integrin α7 (ITGA7) is speculated to promote metastasis, this investigation was designed to investigate whether temsirolimus-resistance is associated with altered ITGA7 expression in RCC cell lines and modified tumor cell adhesion and invasion. Caki-1, KTCTL-26, and A498 RCC cell lines were driven to temsirolimus-resistance by exposing them to temsirolimus over a period of 12 months. Subsequently, adhesion to human umbilical vein endothelial cells, to immobilized fibronectin, or collagen was investigated. Chemotaxis was evaluated with a modified Boyden chamber assay and ITGA7 expression by flow cytometry and western blotting. Chemotaxis significantly decreased in temsirolimus-sensitive cell lines upon exposure to low-dosed temsirolimus, but increased in temsirolimus-resistant tumor cells upon reexposure to the same temsirolimus dose. The increase in chemotaxis was accompanied by elevated ITGA7 at the cell surface membrane with simultaneous reduction of intracellular ITGA7. ITGA7 knock-down significantly diminished motility of temsirolimous-sensitive cells but elevated chemotactic activity of temsirolimus-resistant Caki-1 and KTCTL-26 cells. Therefore, ITGA7 appears closely linked to adhesion and migration regulation in RCC cells. It is postulated that temsirolimus-resistance is associated with translocation of ITGA7 from inside the cell to the outer surface. This switch forces RCC migration forward. Whether ITGA7 can serve as an important target in combatting RCC requires further investigation.


Cells | 2018

HDAC Inhibition Counteracts Metastatic Re-Activation of Prostate Cancer Cells Induced by Chronic mTOR Suppression

Jasmina Makarević; Jochen Rutz; Eva Juengel; Sebastian Maxeiner; Jens Mani; Stefan Vallo; Igor Tsaur; Frederik Roos; Felix K.-H. Chun; Roman A. Blaheta

This study was designed to investigate whether epigenetic modulation by histone deacetylase (HDAC) inhibition might circumvent resistance towards the mechanistic target of rapamycin (mTOR) inhibitor temsirolimus in a prostate cancer cell model. Parental (par) and temsirolimus-resistant (res) PC3 prostate cancer cells were exposed to the HDAC inhibitor valproic acid (VPA), and tumor cell adhesion, chemotaxis, migration, and invasion were evaluated. Temsirolimus resistance was characterized by reduced binding of PC3res cells to endothelium, immobilized collagen, and fibronectin, but increased adhesion to laminin, as compared to the parental cells. Chemotaxis, migration, and invasion of PC3res cells were enhanced following temsirolimus re-treatment. Integrin α and β receptors were significantly altered in PC3res compared to PC3par cells. VPA significantly counteracted temsirolimus resistance by down-regulating tumor cell–matrix interaction, chemotaxis, and migration. Evaluation of integrin expression in the presence of VPA revealed a significant down-regulation of integrin α5 in PC3res cells. Blocking studies demonstrated a close association between α5 expression on PC3res and chemotaxis. In this in vitro model, temsirolimus resistance drove prostate cancer cells to become highly motile, while HDAC inhibition reversed the metastatic activity. The VPA-induced inhibition of metastatic activity was accompanied by a lowered integrin α5 surface level on the tumor cells.

Collaboration


Dive into the Jochen Rutz's collaboration.

Top Co-Authors

Avatar

Roman A. Blaheta

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Eva Juengel

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Tsaur

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Karen Nelson

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Jasmina Makarević

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Sebastian Maxeiner

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Frederik Roos

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Wael Khoder

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Georg Bartsch

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge