Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jochen Schulz.
PLOS ONE | 2015
Jessika Dumke; Dennis Hinse; Tanja Vollmer; Jochen Schulz; Cornelius Knabbe; Jens Dreier
Streptococcus gallolyticus subsp. gallolyticus (S. gallolyticus subsp. gallolyticus), a member of group D streptococci, is an inhabitant of the animal and human gastrointestinal tract. Furthermore, it is a facultative pathogen which causes e.g. endocarditis, septicemia and mastitis. S. gallolyticus subsp. gallolyticus may be transmitted either directly or indirectly between animals and humans. However, the transmission routes are an unsolved issue. In this study, we present systematic analyses of an S. gallolyticus subsp. gallolyticus isolate of an infective endocarditis patient in relation to isolates of his laying hen flock. Isolates from pooled droppings of laying hens, pooled dust samples and human blood culture were characterized by using multilocus sequence typing (MLST) and DNA fingerprinting. MLST revealed the same allelic profile of isolates from the human blood culture and from the droppings of laying hens. In addition, these isolates showed clonal identity regarding a similar DNA fingerprinting pattern. For the first time, we received a hint that transmission of S. gallolyticus subsp. gallolyticus between poultry and humans may occur. This raises the question about the zoonotic potential of isolates from poultry and should be considered in future studies.
PLOS ONE | 2015
Jochen Schulz; Jessika Dumke; Dennis Hinse; Jens Dreier; Christin Habig
Streptococcus gallolyticus subspecies gallolyticus (S. gallolyticus) can colonise the gastrointestinal tract of humans and animals and is known to cause similar infections in both humans and animals. Data about the spread or prevalence in farm animals are missing. In this study, Trypton Soya Agar was modified to a selective medium enabling the isolation and quantification of S. gallolyticus from faecal samples. The bacterium was observed in 82 out of 91 faecal samples obtained from 18 different organic turkey flocks. The prevalence of shedding birds was estimated by the number of positive fresh droppings and reached up to 100% on most farms. Furthermore, for the first time S. gallolyticus was quantified in faeces from poultry flocks. The median of colony forming units (CFU) per gramme faeces was 3.6 x 105CFU/g. Typing of one isolate from each positive faecal sample by multilocus sequence typing delivered 24 sequence types (STs). Most of the isolates belonged to the clonal complex CC58. The same STs of this complex were detected in up to six different flocks. Partly, these flocks were located in various regions and stocked with varying breeding lines. Regarding the biochemical profiles of the same STs from different farms, the results did not contradict a spread of specific STs in the organic turkey production. Moreover, checking the pubMLST database revealed that STs found in this study were also found in other animal species and in humans. The high detection rate and the number of S. gallolyticus in turkey faeces indicate that this bacterium probably belongs to the common microbiota of the gastrointestinal tract of turkeys from organic flocks. Furthermore, the findings of this study support the suggestion of a possible interspecies transmission.
Frontiers in Microbiology | 2016
Hosny El-Adawy; Marwa Fawzy El Metwaly Ahmed; Helmut Hotzel; Stefan Monecke; Jochen Schulz; Joerg Hartung; Ralf Ehricht; Heinrich Neubauer; Hafez M. Hafez
Methicillin-resistant Staphylococcus aureus (MRSA) is a major human health problem and recently, domestic animals are described as carriers and possible reservoirs. Twenty seven S. aureus isolates from five turkey farms (n = 18) and two broiler farms (n = 9) were obtained by culturing of choana and skin swabs from apparently healthy birds, identified by Taqman-based real-time duplex nuc-mecA-PCR and characterized by spa typing as well as by a DNA microarray based assay which covered, amongst others, a considerable number of antibiotic resistance genes, species controls, and virulence markers. The antimicrobial susceptibility profiles were tested by agar diffusion assays and genotypically confirmed by the microarray. Five different spa types (3 in turkeys and 2 in broilers) were detected. The majority of MRSA isolates (24/27) belonged to clonal complex 398-MRSA-V. The most frequently occurring spa types were accordingly t011, t034, and t899. A single CC5-MRSA-III isolated from turkey and CC398-MRSA with an unidentified/truncated SCCmec element in turkey and broiler were additionally detected. The phenotypic antimicrobial resistance profiles of S. aureus isolated from both turkeys and broilers against 14 different antimicrobials showed that all isolates were resistant to ampicillin, cefoxitin, oxacillin, doxycycline, and tetracycline. Moreover, all S. aureus isolated from broilers were resistant to erythromycin and azithromycin. All isolates were susceptible to gentamicin, chloramphenicol, sulphonamides, and fusidic acid. The resistance rate against ciprofloxacin was 55.6% in broiler isolates and 42.1% in turkey isolates. All tetracycline resistant isolates possessed genes tetK/M. All erythromycin-resistant broiler isolates carried ermA. Only one broiler isolate (11.1%) carried genes ermA, ermB, and ermC, while 55.6% of turkey isolates possessed ermA and ermB genes. Neither PVL genes (lukF/S-PV), animal-associated leukocidin (lukM and luk-P83) nor the gene encoding the toxic shock syndrome toxin (tst1) were found in turkey and broiler isolates. In conclusion, the detection of MRSA in healthy turkeys and broilers with even additional antibiotic resistance markers is of major public health concern. The difference in antibiotic resistance and virulence markers between MRSA isolates from turkeys and broilers was addressed.
Frontiers in Microbiology | 2016
Jochen Schulz; Inga Ruddat; Jörg Hartung; Gerd Hamscher; Christa Ewers
In a retrospective study, 119 sedimentation dust samples stored between five and 35 years from various barns of intensive livestock farming were evaluated for the occurrence of cultivatable Escherichia coli. Growth of E. coli occurred in 54 samples. Successful cultivation was achieved in samples from as early as 1994. The frequency of detection increased from earlier to later time periods, but the concentrations, which ranged between 3.4 × 102 and 1.1 × 105 colony-forming units per gram, did not correlate with sample age (Spearman rank correlation; p > 0.05). We hypothesize that E. coli cells survived in dust samples without cell division because of the storage conditions. Dry material (dust) with low water activities (arithmetic mean < 0.6) and storage at 4°C in the dark likely facilitated long-term survival. E. coli were isolated on MacConkey agar with and without ciprofloxacin supplementation. For 110 isolates (79 from non-supplemented media and 31 from supplemented media), we determined the E. coli phylotype and antimicrobial resistance. Six phylogenetic groups were identified. Phylogroups A and B1 predominated. Compared to group A, phylogroup B1 was significantly associated with growth on ciprofloxacin-supplemented media (chi-square test, p = 0.003). Furthermore, the antibiotic resistance profiles determined by a microdilution method revealed that isolates were phenotypically resistant to at least one antimicrobial substance and that more than 50% were resistant to a minimum of five out of 10 antibiotics tested. A linear mixed model was used to identify factors associated with the number of phenotypic resistances of individual isolates. Younger isolates and isolates from fattening poultry barns tended to be resistant to significantly more antibiotics than older isolates and those from laying-hen houses (p = 0.01 and p = 0.02, respectively). Sample origin and storage conditions may have influenced the number of antimicrobial resistances. Overall, we found that under particular conditions, dust from farm animal houses can be reservoirs for antimicrobial-resistant E. coli for at least 20 years. The survival strategies that allow E. coli to survive such long periods in environmental samples are not fully understood and could be an interesting research topic for future studies.
PLOS ONE | 2013
Daniel Schmidtke; Jochen Schulz; Jörg Hartung; Karl-Heinz Esser
In the 1970s, Tavolga conducted a series of experiments in which he found behavioral evidence that the vocalizations of the catfish species Ariopsis felis may play a role in a coarse form of echolocation. Based on his findings, he postulated a similar function for the calls of closely related catfish species. Here, we describe the physical characteristics of the predominant call-type of Ariopsis seemanni. In two behavioral experiments, we further explore whether A. seemanni uses these calls for acoustic obstacle detection by testing the hypothesis that the call-emission rate of individual fish should increase when subjects are confronted with novel objects, as it is known from other vertebrate species that use pulse-type signals to actively probe the environment. Audio-video monitoring of the fish under different obstacle conditions did not reveal a systematic increase in the number of emitted calls in the presence of novel objects or in dependence on the proximity between individual fish and different objects. These negative findings in combination with our current understanding of directional hearing in fishes (which is a prerequisite for acoustic obstacle detection) make it highly unlikely that A. seemanni uses its calls for acoustic obstacle detection. We argue that the calls are more likely to play a role in intra- or interspecific communication (e.g. in school formation or predator deterrence) and present results from a preliminary Y-maze experiment that are indicative for a positive phonotaxis of A. seemanni towards the calls of conspecifics.
Porcine Health Management | 2018
Krista Marie Wagner; Jochen Schulz
BackgroundEnrichment materials for pigs, particularly organic materials, are becoming increasingly important in order to reduce abnormal behaviour such as tail biting. However, potential health risks posed by these materials (such as the introduction of pathogens into the herd) have not been sufficiently studied to date. Therefore, 21 different organic materials used as enrichment materials in pig farming were tested for total viable count of mesophilic bacteria, moulds, coliforms, Escherichia coli, Klebsiella spp., Yersinia spp., Salmonella spp., methicillin-resistant Staphylococcus aureus, and Mycobacterium spp. Additionally, dry matter content and water activity were determined.ResultsThe materials differed considerably in their hygienic status. In three materials, no microorganisms were detected. However, the bacterial count in the other materials ranged up to 7.89 log10 cfu/g dry matter (maize silage). The highest coliform and mould counts were found in hay (6.45 and 6.94 log10 cfu/g dry matter, respectively). Important bacteria presenting a risk to human or animal health such as Escherichia coli, Klebsiella spp., Yersinia spp., Salmonella spp., and methicillin-resistant Staphylococcus aureus were not detected in any of the materials. Hemp straw contained Mycobacterium smegmatis, and peat was contaminated with Mycobacterium avium and Mycobacterium vulneris.ConclusionsMost of the tested organic materials are probably not likely to pose a hygienic risk to pigs and are suitable as enrichment material. Nonetheless the detected mycobacteria rule out peat as being a safe and hygienic enrichment material.
Archive | 2005
Jochen Schulz; Jens Seedorf; Jörg Hartung
Annals of Agricultural and Environmental Medicine | 2016
Heiko Stein; Jochen Schulz; Alexander Tichy; Ines Krauss; Christian Knecht; Isabel Hennig-Pauka
6th Symposium on Antimicrobial Resistance in Animals and the Environment; 29 June – 1 July 2015 Tours (ARAE 2015) | 2015
Hosny El-Adawy; Muzahed Uddin Ahmed; Helmut Hotzel; Stefan Monecke; Jochen Schulz; Joerg Hartung; Ralf Ehricht; Heinrich Neubauer; Hafez M. Hafez
Archive | 2013
Jochen Schulz; Endong Bao; Jörg Hartung