Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jochen Utikal is active.

Publication


Featured researches published by Jochen Utikal.


Cell Stem Cell | 2007

Directly Reprogrammed Fibroblasts Show Global Epigenetic Remodeling and Widespread Tissue Contribution

Nimet Maherali; Rupa Sridharan; Wei Xie; Jochen Utikal; Sarah Eminli; Katrin Arnold; Matthias Stadtfeld; Robin Yachechko; Jason Tchieu; Rudolf Jaenisch; Kathrin Plath

Ectopic expression of the four transcription factors Oct4, Sox2, c-Myc, and Klf4 is sufficient to confer a pluripotent state upon the fibroblast genome, generating induced pluripotent stem (iPS) cells. It remains unknown if nuclear reprogramming induced by these four factors globally resets epigenetic differences between differentiated and pluripotent cells. Here, using novel selection approaches, we have generated iPS cells from fibroblasts to characterize their epigenetic state. Female iPS cells showed reactivation of a somatically silenced X chromosome and underwent random X inactivation upon differentiation. Genome-wide analysis of two key histone modifications indicated that iPS cells are highly similar to ES cells. Consistent with these observations, iPS cells gave rise to viable high-degree chimeras with contribution to the germline. These data show that transcription factor-induced reprogramming leads to the global reversion of the somatic epigenome into an ES-like state. Our results provide a paradigm for studying the epigenetic modifications that accompany nuclear reprogramming and suggest that abnormal epigenetic reprogramming does not pose a problem for the potential therapeutic applications of iPS cells.


Science | 2008

Induced pluripotent stem cells generated without viral integration.

Matthias Stadtfeld; Masaki Nagaya; Jochen Utikal; Gordon C. Weir

Pluripotent stem cells have been generated from mouse and human somatic cells by viral expression of the transcription factors Oct4, Sox2, Klf4, and c-Myc. A major limitation of this technology is the use of potentially harmful genome-integrating viruses. We generated mouse induced pluripotent stem (iPS) cells from fibroblasts and liver cells by using nonintegrating adenoviruses transiently expressing Oct4, Sox2, Klf4, and c-Myc. These adenoviral iPS (adeno-iPS) cells show DNA demethylation characteristic of reprogrammed cells, express endogenous pluripotency genes, form teratomas, and contribute to multiple tissues, including the germ line, in chimeric mice. Our results provide strong evidence that insertional mutagenesis is not required for in vitro reprogramming. Adenoviral reprogramming may provide an improved method for generating and studying patient-specific stem cells and for comparing embryonic stem cells and iPS cells.


The New England Journal of Medicine | 2012

Improved Survival with MEK Inhibition in BRAF-Mutated Melanoma

Keith T. Flaherty; Caroline Robert; Peter Hersey; Paul C. Nathan; Claus Garbe; Mohammed M. Milhem; Lev V. Demidov; Jessica C. Hassel; Piotr Rutkowski; Peter Mohr; Reinhard Dummer; Uwe Trefzer; James Larkin; Jochen Utikal; Brigitte Dreno; Marta Nyakas; Mark R. Middleton; Jürgen C. Becker; Michelle Casey; Laurie Sherman; Frank S. Wu; Daniele Ouellet; Anne-Marie Martin; Kiran Patel; Dirk Schadendorf

BACKGROUND Activating mutations in serine-threonine protein kinase B-RAF (BRAF) are found in 50% of patients with advanced melanoma. Selective BRAF-inhibitor therapy improves survival, as compared with chemotherapy, but responses are often short-lived. In previous trials, MEK inhibition appeared to be promising in this population. METHODS In this phase 3 open-label trial, we randomly assigned 322 patients who had metastatic melanoma with a V600E or V600K BRAF mutation to receive either trametinib, an oral selective MEK inhibitor, or chemotherapy in a 2:1 ratio. Patients received trametinib (2 mg orally) once daily or intravenous dacarbazine (1000 mg per square meter of body-surface area) or paclitaxel (175 mg per square meter) every 3 weeks. Patients in the chemotherapy group who had disease progression were permitted to cross over to receive trametinib. Progression-free survival was the primary end point, and overall survival was a secondary end point. RESULTS Median progression-free survival was 4.8 months in the trametinib group and 1.5 months in the chemotherapy group (hazard ratio for disease progression or death in the trametinib group, 0.45; 95% confidence interval [CI], 0.33 to 0.63; P<0.001). At 6 months, the rate of overall survival was 81% in the trametinib group and 67% in the chemotherapy group despite crossover (hazard ratio for death, 0.54; 95% CI, 0.32 to 0.92; P=0.01). Rash, diarrhea, and peripheral edema were the most common toxic effects in the trametinib group and were managed with dose interruption and dose reduction; asymptomatic and reversible reduction in the cardiac ejection fraction and ocular toxic effects occurred infrequently. Secondary skin neoplasms were not observed. CONCLUSIONS Trametinib, as compared with chemotherapy, improved rates of progression-free and overall survival among patients who had metastatic melanoma with a BRAF V600E or V600K mutation. (Funded by GlaxoSmithKline; METRIC ClinicalTrials.gov number, NCT01245062.).


Nature | 2009

Immortalization eliminates a roadblock during cellular reprogramming into iPS cells

Jochen Utikal; Jose M. Polo; Matthias Stadtfeld; Nimet Maherali; Warakorn Kulalert; Ryan M. Walsh; Adam Khalil; James G. Rheinwald

The overexpression of defined transcription factors in somatic cells results in their reprogramming into induced pluripotent stem (iPS) cells. The extremely low efficiency and slow kinetics of in vitro reprogramming suggest that further rare events are required to generate iPS cells. The nature and identity of these events, however, remain elusive. We noticed that the reprogramming potential of primary murine fibroblasts into iPS cells decreases after serial passaging and the concomitant onset of senescence. Consistent with the notion that loss of replicative potential provides a barrier for reprogramming, here we show that cells with low endogenous p19Arf (encoded by the Ink4a/Arf locus, also known as Cdkn2a locus) protein levels and immortal fibroblasts deficient in components of the Arf–Trp53 pathway yield iPS cell colonies with up to threefold faster kinetics and at a significantly higher efficiency than wild-type cells, endowing almost every somatic cell with the potential to form iPS cells. Notably, the acute genetic ablation of Trp53 (also known as p53) in cellular subpopulations that normally fail to reprogram rescues their ability to produce iPS cells. Our results show that the acquisition of immortality is a crucial and rate-limiting step towards the establishment of a pluripotent state in somatic cells and underscore the similarities between induced pluripotency and tumorigenesis.


The New England Journal of Medicine | 2014

Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma

Daniil Stroyakovskiy; Helen Gogas; Evgeny Levchenko; F. de Braud; James Larkin; Claus Garbe; T. Jouary; Axel Hauschild; V. Chiarion Sileni; Celeste Lebbe; Mario Mandalà; Michael Millward; Ana Arance; Igor N. Bondarenko; Johan Hansson; Jochen Utikal; Virginia Ferraresi; N. Kovalenko; Peter Mohr; Dirk Schadendorf; Paul Nathan; Caroline Robert; Antoni Ribas; Michelle Casey; Daniele Ouellet; Ngocdiep T. Le; Kiran Patel; Keith T. Flaherty

BACKGROUND Combined BRAF and MEK inhibition, as compared with BRAF inhibition alone, delays the emergence of resistance and reduces toxic effects in patients who have melanoma with BRAF V600E or V600K mutations. METHODS In this phase 3 trial, we randomly assigned 423 previously untreated patients who had unresectable stage IIIC or stage IV melanoma with a BRAF V600E or V600K mutation to receive a combination of dabrafenib (150 mg orally twice daily) and trametinib (2 mg orally once daily) or dabrafenib and placebo. The primary end point was progression-free survival. Secondary end points included overall survival, response rate, response duration, and safety. A preplanned interim overall survival analysis was conducted. RESULTS The median progression-free survival was 9.3 months in the dabrafenib-trametinib group and 8.8 months in the dabrafenib-only group (hazard ratio for progression or death in the dabrafenib-trametinib group, 0.75; 95% confidence interval [CI], 0.57 to 0.99; P=0.03). The overall response rate was 67% in the dabrafenib-trametinib group and 51% in the dabrafenib-only group (P=0.002). At 6 months, the interim overall survival rate was 93% with dabrafenib-trametinib and 85% with dabrafenib alone (hazard ratio for death, 0.63; 95% CI, 0.42 to 0.94; P=0.02). However, a specified efficacy-stopping boundary (two-sided P=0.00028) was not crossed. Rates of adverse events were similar in the two groups, although more dose modifications occurred in the dabrafenib-trametinib group. The rate of cutaneous squamous-cell carcinoma was lower in the dabrafenib-trametinib group than in the dabrafenib-only group (2% vs. 9%), whereas pyrexia occurred in more patients (51% vs. 28%) and was more often severe (grade 3, 6% vs. 2%) in the dabrafenib-trametinib group. CONCLUSIONS A combination of dabrafenib and trametinib, as compared with dabrafenib alone, improved the rate of progression-free survival in previously untreated patients who had metastatic melanoma with BRAF V600E or V600K mutations. (Funded by GlaxoSmithKline; Clinical Trials.gov number, NCT01584648.).


Science | 2015

Genomic correlates of response to CTLA-4 blockade in metastatic melanoma

Eliezer M. Van Allen; Diana Miao; Bastian Schilling; Sachet A. Shukla; Christian U. Blank; Lisa Zimmer; Antje Sucker; Uwe Hillen; Marnix H. Geukes Foppen; Simone M. Goldinger; Jochen Utikal; Jessica C. Hassel; Benjamin Weide; Katharina C. Kaehler; Carmen Loquai; Peter Mohr; Ralf Gutzmer; Reinhard Dummer; Stacey Gabriel; Catherine J. Wu; Dirk Schadendorf; Levi A. Garraway

Is cancer immunotherapy a private affair? Immune checkpoint blockade, a relatively new cancer treatment, substantially extends the survival of a subset of patients. Previous work has shown that patients whose tumors harbor the largest number of mutations—and thus produce a large number of “neoantigens” recognized as foreign by the immune system—are most likely to benefit. Expanding on these earlier studies, Van Allen et al. studied over 100 patients with melanoma and found a similar correlation (see the Perspective by Gubin and Schreiber). There was no evidence, however, that specific neoantigen sequences were shared by patients who responded. Science, this issue p. 207, see also p. 158 Melanoma patients who respond to immunotherapy do not appear to share common tumor neoantigens. [Also see Perspective by Gubin and Schreiber ] Monoclonal antibodies directed against cytotoxic T lymphocyte–associated antigen-4 (CTLA-4), such as ipilimumab, yield considerable clinical benefit for patients with metastatic melanoma by inhibiting immune checkpoint activity, but clinical predictors of response to these therapies remain incompletely characterized. To investigate the roles of tumor-specific neoantigens and alterations in the tumor microenvironment in the response to ipilimumab, we analyzed whole exomes from pretreatment melanoma tumor biopsies and matching germline tissue samples from 110 patients. For 40 of these patients, we also obtained and analyzed transcriptome data from the pretreatment tumor samples. Overall mutational load, neoantigen load, and expression of cytolytic markers in the immune microenvironment were significantly associated with clinical benefit. However, no recurrent neoantigen peptide sequences predicted responder patient populations. Thus, detailed integrated molecular characterization of large patient cohorts may be needed to identify robust determinants of response and resistance to immune checkpoint inhibitors.


The Lancet | 2015

Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial

Daniil Stroyakovskiy; Helen Gogas; Evgeny Levchenko; Filippo de Braud; James Larkin; Claus Garbe; Thomas Jouary; Axel Hauschild; Jean Jacques Grob; Vanna Chiarion-Sileni; Celeste Lebbe; Mario Mandalà; Michael Millward; Ana Arance; Igor Bondarenko; John B. A. G. Haanen; Johan Hansson; Jochen Utikal; Virginia Ferraresi; Nadezhda Kovalenko; Peter Mohr; Volodymr Probachai; Dirk Schadendorf; Paul Nathan; Caroline Robert; Antoni Ribas; Douglas J. DeMarini; Jhangir G. Irani; Suzanne Swann; Jeffrey J. Legos

BACKGROUND Previously, a study of ours showed that the combination of dabrafenib and trametinib improves progression-free survival compared with dabrafenib and placebo in patients with BRAF Val600Lys/Glu mutation-positive metastatic melanoma. The study was continued to assess the secondary endpoint of overall survival, which we report in this Article. METHODS We did this double-blind phase 3 study at 113 sites in 14 countries. We enrolled previously untreated patients with BRAF Val600Glu or Val600Lys mutation-positive unresectable stage IIIC or stage IV melanoma. Participants were computer-randomised (1:1) to receive a combination of dabrafenib (150 mg orally twice daily) and trametinib (2 mg orally once daily), or dabrafenib and placebo. The primary endpoint was progression-free survival and overall survival was a secondary endpoint. This study is registered with ClinicalTrials.gov, number NCT01584648. FINDINGS Between May 4, 2012, and Nov 30, 2012, we screened 947 patients for eligibility, of whom 423 were randomly assigned to receive dabrafenib and trametinib (n=211) or dabrafenib only (n=212). The final data cutoff was Jan 12, 2015, at which time 222 patients had died. Median overall survival was 25·1 months (95% CI 19·2-not reached) in the dabrafenib and trametinib group versus 18·7 months (15·2-23·7) in the dabrafenib only group (hazard ratio [HR] 0·71, 95% CI 0·55-0·92; p=0·0107). Overall survival was 74% at 1 year and 51% at 2 years in the dabrafenib and trametinib group versus 68% and 42%, respectively, in the dabrafenib only group. Based on 301 events, median progression-free survival was 11·0 months (95% CI 8·0-13·9) in the dabrafenib and trametinib group and 8·8 months (5·9-9·3) in the dabrafenib only group (HR 0·67, 95% CI 0·53-0·84; p=0·0004; unadjusted for multiple testing). Treatment-related adverse events occurred in 181 (87%) of 209 patients in the dabrafenib and trametinib group and 189 (90%) of 211 patients in the dabrafenib only group; the most common was pyrexia (108 patients, 52%) in the dabrafenib and trametinib group, and hyperkeratosis (70 patients, 33%) in the dabrafenib only group. Grade 3 or 4 adverse events occurred in 67 (32%) patients in the dabrafenib and trametinib group and 66 (31%) patients in the dabrafenib only group. INTERPRETATION The improvement in overall survival establishes the combination of dabrafenib and trametinib as the standard targeted treatment for BRAF Val600 mutation-positive melanoma. Studies assessing dabrafenib and trametinib in combination with immunotherapies are ongoing. FUNDING GlaxoSmithKline.


Stem Cells | 2008

Reprogramming of Neural Progenitor Cells into Induced Pluripotent Stem Cells in the Absence of Exogenous Sox2 Expression

Sarah Eminli; Jochen Utikal; Katrin Arnold; Rudolf Jaenisch

Expression of the transcription factors Oct4, Sox2, Klf4, and c‐Myc in mesodermal and endodermal derivatives, including fibroblasts, lymphocytes, liver, stomach, and β cells, generates induced pluripotent stem (iPS) cells. It remains unknown, however, whether cell types of the ectodermal lineage are equally amenable to reprogramming into iPS cells by the same combination of factors. To test this, we have isolated genetically marked neural progenitor cells (NPCs) from neonatal mouse brains and infected them with viral vectors expressing Oct4, Sox2, Klf4, and c‐Myc. Infected NPCs gave rise to iPS cells that expressed markers of embryonic stem cells, showed demethylation of pluripotency genes, formed teratomas, and contributed to viable chimeras. In contrast to other somatic cell types, NPCs expressed high levels of endogenous Sox2 and thus did not require viral Sox2 expression for reprogramming into iPS cells. Our data show that in addition to mesoderm‐ and endoderm‐derived cell types, neural progenitor cells of the ectodermal lineage can be reprogrammed into iPS cells, suggesting that in vitro reprogramming is a universal process. These results also imply that the combination of factors necessary for reprogramming is dependent on cellular context.


Journal of Cell Science | 2009

Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells.

Jochen Utikal; Nimet Maherali; Warakorn Kulalert

Induced pluripotent stem cells (iPSCs) have been derived at low frequencies from different cell types through ectopic expression of the transcription factors Oct4 and Sox2, combined with either Klf4 and c-Myc or Lin28 and Nanog. In order to generate iPSCs more effectively, it will be crucial to identify somatic cells that are easily accessible and possibly require fewer factors for conversion into iPSCs. Here, we show that both human and mouse melanocytes give rise to iPSCs at higher efficiencies than fibroblasts. Moreover, we demonstrate that a mouse malignant melanoma cell line, which has previously been reprogrammed into embryonic stem cells by nuclear transfer, remains equally amenable to reprogramming into iPSCs by these transcription factors. In contrast to skin fibroblasts, melanocytes and melanoma cells did not require ectopic Sox2 expression for conversion into iPSCs. iPSC lines from melanocytic cells expressed pluripotency markers, formed teratomas and contributed to viable chimeric mice with germ line transmission. Our results identify skin melanocytes as an alternative source for deriving patient-specific iPSCs at increased efficiency and with fewer genetic elements. In addition, our results suggest that cancer cells remain susceptible to transcription factor-mediated reprogramming, which should facilitate the study of epigenetic changes in human cancer.


Nature | 2017

Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer

Ugur Sahin; Evelyna Derhovanessian; Matthias Miller; Björn-Philipp Kloke; Petra Simon; Martin Löwer; Valesca Bukur; Arbel D. Tadmor; Ulrich Luxemburger; Barbara Schrörs; Tana Omokoko; Mathias Vormehr; Christian Albrecht; Anna Paruzynski; Andreas Kuhn; Janina Buck; Sandra Heesch; Katharina Schreeb; Felicitas Müller; Inga Ortseifer; Isabel Vogler; Eva Godehardt; Sebastian Attig; Richard Rae; Andrea Breitkreuz; Claudia Tolliver; Martin Suchan; Goran Martic; Alexander Hohberger; Patrick Sorn

T cells directed against mutant neo-epitopes drive cancer immunity. However, spontaneous immune recognition of mutations is inefficient. We recently introduced the concept of individualized mutanome vaccines and implemented an RNA-based poly-neo-epitope approach to mobilize immunity against a spectrum of cancer mutations. Here we report the first-in-human application of this concept in melanoma. We set up a process comprising comprehensive identification of individual mutations, computational prediction of neo-epitopes, and design and manufacturing of a vaccine unique for each patient. All patients developed T cell responses against multiple vaccine neo-epitopes at up to high single-digit percentages. Vaccine-induced T cell infiltration and neo-epitope-specific killing of autologous tumour cells were shown in post-vaccination resected metastases from two patients. The cumulative rate of metastatic events was highly significantly reduced after the start of vaccination, resulting in a sustained progression-free survival. Two of the five patients with metastatic disease experienced vaccine-related objective responses. One of these patients had a late relapse owing to outgrowth of β2-microglobulin-deficient melanoma cells as an acquired resistance mechanism. A third patient developed a complete response to vaccination in combination with PD-1 blockade therapy. Our study demonstrates that individual mutations can be exploited, thereby opening a path to personalized immunotherapy for patients with cancer.

Collaboration


Dive into the Jochen Utikal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Schadendorf

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica C. Hassel

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Ralf Gutzmer

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Peter Mohr

Australian Animal Health Laboratory

View shared research outputs
Top Co-Authors

Avatar

Selma Ugurel

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Claus Garbe

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge