Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jodi K. Craigo is active.

Publication


Featured researches published by Jodi K. Craigo.


Antimicrobial Agents and Chemotherapy | 2005

Activity of the De Novo Engineered Antimicrobial Peptide WLBU2 against Pseudomonas aeruginosa in Human Serum and Whole Blood: Implications for Systemic Applications

Berthony Deslouches; Kazi Islam; Jodi K. Craigo; Shruti M. Paranjape; Ronald C. Montelaro; Timothy A. Mietzner

ABSTRACT Cationic amphipathic peptides have been extensively investigated as a potential source of new antimicrobials that can complement current antibiotic regimens in the face of emerging drug-resistant bacteria. However, the suppression of antimicrobial activity under certain biologically relevant conditions (e.g., serum and physiological salt concentrations) has hampered efforts to develop safe and effective antimicrobial peptides for clinical use. We have analyzed the activity and selectivity of the human peptide LL37 and the de novo engineered antimicrobial peptide WLBU2 in several biologically relevant conditions. The host-derived synthetic peptide LL37 displayed high activity against Pseudomonas aeruginosa but demonstrated staphylococcus-specific sensitivity to NaCl concentrations varying from 50 to 300 mM. Moreover, LL37 potency was variably suppressed in the presence of 1 to 6 mM Mg2+ and Ca2+ ions. In contrast, WLBU2 maintained its activity in NaCl and physiologic serum concentrations of Mg2+ and Ca2+. WLBU2 is able to kill P. aeruginosa (106 CFU/ml) in human serum, with a minimum bactericidal concentration of <9 μM. Conversely, LL37 is inactive in the presence of human serum. Bacterial killing kinetic assays in serum revealed that WLBU2 achieved complete bacterial killing in 20 min. Consistent with these results was the ability of WLBU2 (15 to 20 μM) to eradicate bacteria from ex vivo samples of whole blood. The selectivity of WLBU2 was further demonstrated by its ability to specifically eliminate P. aeruginosa in coculture with human monocytes or skin fibroblasts without detectable adverse effects to the host cells. Finally, WLBU2 displayed potent efficacy against P. aeruginosa in an intraperitoneal infection model using female Swiss Webster mice. These results establish a potential application of WLBU2 in the treatment of bacterial sepsis.


AIDS Research and Human Retroviruses | 2002

Subcompartmentalization of HIV-1 quasispecies between seminal cells and seminal plasma indicates their origin in distinct genital tissues.

Shirish Paranjpe; Jodi K. Craigo; Bruce K. Patterson; Ming Ding; Paulo Feijó Barroso; Lee H. Harrison; Ronald C. Montelaro; Phalguni Gupta

The mononuclear cells and plasma components of semen from HIV-infected subjects have been shown to contain HIV-1. However, there is very little information as to whether distinct HIV-1 population are present in these two seminal compartments or as to their tissue of origin. Phylogenetic analysis of nucleotide sequences of the C2-V5 region of the HIV-1 gp120 from HIV-1 RNA isolated from seminal cells and seminal plasma of five subjects indicates that the HIV-1 population derived from seminal plasma was distinct from that present in seminal cells. Such subcompartmentalization of HIV-1 between seminal cells and seminal plasma was detected as early as 3 months after seroconversion and persisted up to 38 months following seroconversion. Furthermore, comparison of HIV-1 sequences between testis and prostate tissues showed distinct HIV-1 populations in these tissue compartments. In situ real-time (Taqman) PCR analysis of prostate and testis tissues indicated that T lymphocytes were the predominant cells infected with HIV-1 in both of these tissues. Since seminal plasma is derived from prostate and most of the seminal cells originate from the rete testis and epididymis, these results are consistent with the idea that HIV-1 in seminal plasma is derived from the prostate, while HIV-1-infected cells in semen originate mostly from the rete testis and epididymis. These findings provide for the first time evidence of subcompartmentalization of HIV-1 in male genital organs and suggest that intervention strategies such as vasectomy may not prevent sexual transmission.


Journal of Virology | 2001

Equine Infectious Anemia Virus Genomic Evolution in Progressor and Nonprogressor Ponies

Caroline Leroux; Jodi K. Craigo; Charles J. Issel; Ronald C. Montelaro

ABSTRACT A primary mechanism of lentivirus persistence is the ability of these viruses to evolve in response to biological and immunological selective pressures with a remarkable array of genetic and antigenic variations that constitute a perpetual natural experiment in genetic engineering. A widely accepted paradigm of lentivirus evolution is that the rate of genetic variation is correlated directly with the levels of virus replication: the greater the viral replication, the more opportunities that exist for genetic modifications and selection of viral variants. To test this hypothesis directly, we examined the patterns of equine infectious anemia virus (EIAV) envelope variation during a 2.5-year period in experimentally infected ponies that differed markedly in clinical progression and in steady-state levels of viral replication as indicated by plasma virus genomic RNA assays. The results of these comprehensive studies revealed for the first time similar extents of envelope gp90 variation in persistently infected ponies regardless of the number of disease cycles (one to six) and viremia during chronic disease. The extent of envelope variation was also independent of the apparent steady-state levels of virus replication during long-term asymptomatic infection, varying from undetectable to 105 genomic RNA copies per ml of plasma. In addition, the data confirmed the evolution of distinct virus populations (genomic quasispecies) associated with sequential febrile episodes during acute and chronic EIA and demonstrated for the first time ongoing envelope variation during long-term asymptomatic infections. Finally, comparison of the rates of evolution of the previously defined EIAV gp90 variable domains demonstrated distinct differences in the rates of nucleotide and amino acid sequence variation, presumably reflecting differences in the ability of different envelope domains to respond to immune or other biological selection pressures. Thus, these data suggest that EIAV variation can be associated predominantly with ongoing low levels of virus replication and selection in target tissues, even in the absence of substantial levels of plasma viremia, and that envelope variation continues during all stages of persistent infection as the virus successfully avoids clearance by host defense mechanisms.


Antimicrobial Agents and Chemotherapy | 2013

Rational Design of Engineered Cationic Antimicrobial Peptides Consisting Exclusively of Arginine and Tryptophan, and Their Activity against Multidrug-Resistant Pathogens

Berthony Deslouches; Jonathan D. Steckbeck; Jodi K. Craigo; Yohei Doi; Timothy A. Mietzner; Ronald C. Montelaro

ABSTRACT The emergence of multidrug-resistant (MDR) pathogens underscores the need for new antimicrobial agents to overcome the resistance mechanisms of these organisms. Cationic antimicrobial peptides (CAPs) provide a potential source of new antimicrobial therapeutics. We previously characterized a lytic base unit (LBU) series of engineered CAPs (eCAPs) of 12 to 48 residues demonstrating maximum antibacterial selectivity at 24 residues. Further, Trp substitution in LBU sequences increased activity against both P. aeruginosa and S. aureus under challenging conditions (e.g., saline, divalent cations, and serum). Based on these findings, we hypothesized that the optimal length and, therefore, the cost for maximum eCAP activity under physiologically relevant conditions could be significantly reduced using only Arg and Trp arranged to form idealized amphipathic helices. Hence, we developed a novel peptide series, composed only of Arg and Trp, in a sequence predicted and verified by circular dichroism to fold into optimized amphipathic helices. The most effective antimicrobial activity was achieved at 12 residues in length (WR12) against a panel of both Gram-negative and Gram-positive clinical isolates, including extensively drug-resistant strains, in saline and broth culture and at various pH values. The results demonstrate that the rational design of CAPs can lead to a significant reduction in the length and the number of amino acids used in peptide design to achieve optimal potency and selectivity against specific pathogens.


Journal of Virology | 2003

A live attenuated equine infectious anemia virus proviral vaccine with a modified S2 gene provides protection from detectable infection by intravenous virulent virus challenge of experimentally inoculated horses.

Feng Li; Jodi K. Craigo; L. Howe; Jonathan D. Steckbeck; Sheila J. Cook; Charles J. Issel; Ronald C. Montelaro

ABSTRACT Previous evaluations of inactivated whole-virus and envelope subunit vaccines to equine infectious anemia virus (EIAV) have revealed a broad spectrum of efficacy ranging from highly type-specific protection to severe enhancement of viral replication and disease in experimentally immunized equids. Among experimental animal lentivirus vaccines, immunizations with live attenuated viral strains have proven most effective, but the vaccine efficacy has been shown to be highly dependent on the nature and severity of the vaccine virus attenuation. We describe here for the first time the characterization of an experimental attenuated proviral vaccine, EIAVUKΔS2, based on inactivation of the S2 accessory gene to down regulate in vivo replication without affecting in vitro growth properties. The results of these studies demonstrated that immunization with EIAVUKΔS2 elicited mature virus-specific immune responses by 6 months and that this vaccine immunity provided protection from disease and detectable infection by intravenous challenge with a reference virulent biological clone, EIAVPV. This level of protection was observed in each of the six experimental horses challenged with the reference virulent EIAVPV by using a low-dose multiple-exposure protocol (three administrations of 10 median horse infectious doses [HID50], intravenous) designed to mimic field exposures and in all three experimentally immunized ponies challenged intravenously with a single inoculation of 3,000 HID50. In contrast, naïve equids subjected to the low- or high-dose challenge develop a detectable infection of challenge virus and acute disease within several weeks. Thus, these data demonstrate that the EIAV S2 gene provides an optimal site for modification to achieve the necessary balance between attenuation to suppress virulence and replication potential to sufficiently drive host immune responses to produce vaccine immunity to viral exposure.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Envelope variation as a primary determinant of lentiviral vaccine efficacy

Jodi K. Craigo; Baoshan Zhang; Shannon Barnes; Tara L. Tagmyer; Sheila J. Cook; Charles J. Issel; Ronald C. Montelaro

Lentiviral envelope antigenic variation and associated immune evasion are believed to present major obstacles to effective vaccine development. Although this perception is widely assumed by the scientific community, there is, to date, no rigorous experimental data assessing the effect of increasing levels of lentiviral Env variation on vaccine efficacy. It is our working hypothesis that Env is, in fact, a primary determinant of vaccine effectiveness. We previously reported that a successful experimental attenuated equine infectious anemia virus vaccine, derived by mutation of the viral S2 accessory gene, provided 100% protection from disease after virulent virus challenge. Here, we sought to comprehensively test our hypothesis by challenging vaccinated animals with proviral strains of defined, increasing Env variation, using variant envelope SU genes that arose naturally during experimental infection of ponies with equine infectious anemia virus. The reference attenuated vaccine combined with these variant Env challenge strains facilitated evaluation of the protection conferred by ancestral immunogens, because the Env of the attenuated vaccine is a direct ancestor to the variant proviral strain Envs. The results demonstrated that ancestral Env proteins did not impart broad levels of protection against challenge. Furthermore, the results displayed a significant inverse linear correlation of Env divergence and protection from disease. This study demonstrates potential obstacles to the use of single isolate ancestral Env immunogens. Finally, these findings reveal that relatively minor Env variation can pose a substantial challenge to lentiviral vaccine immunity, even when attenuated vaccines are used that, to date, achieve the highest levels of vaccine protection.


Journal of Virology | 2000

The S2 Gene of Equine Infectious Anemia Virus Is a Highly Conserved Determinant of Viral Replication and Virulence Properties in Experimentally Infected Ponies

Feng Li; Caroline Leroux; Jodi K. Craigo; Sheila J. Cook; Charles J. Issel; Ronald C. Montelaro

ABSTRACT Equine infectious anemia virus (EIAV) is genetically one of the simplest lentiviruses in that the viral genome encodes only three accessory genes, tat, rev, and S2. Although serological analyses demonstrate the expression of the S2 protein in persistently infected horses, the role of this viral gene remains undefined. We recently reported that the S2 gene is not essential for EIAV replication in primary equine macrophages, as EIAV mutants lacking the S2 gene replicate to levels similar to those of the parental virus (F. Li, B. A. Puffer, and R. C. Montelaro, J. Virol. 72:8344–8348, 1998). We now describe in vivo studies that examine the evolution and role of theS2 gene in ponies experimentally infected with EIAV. The results of these studies reveal for the first time that theS2 gene is highly conserved during persistent infection and that deletion of the S2 gene reduces viral virulence and virus replication levels compared to those of the parental virus containing a functional S2 gene. These data indicate that the EIAV S2 gene is in fact an important determinant of viral replication and pathogenic properties in vivo, despite the evident lack of S2 influence on viral replication levels in vitro. Thus, these observations suggest in vivo functions of EIAVS2 that are not adequately reflected in simple infections of cultured cells, including natural target macrophages.


Journal of General Virology | 2002

Transient immune suppression of inapparent carriers infected with a principal neutralizing domain-deficient equine infectious anaemia virus induces neutralizing antibodies and lowers steady-state virus replication

Jodi K. Craigo; Caroline Leroux; L. Howe; Jonathan D. Steckbeck; Sheila J. Cook; Charles J. Issel; Ronald C. Montelaro

The genetic variation of equine infectious anaemia virus (EIAV) clearly affects the antigenic properties of the viral envelope; however, effects on immunogenicity remain undefined, although widely assumed. Here, the immunogenicity is reported of a novel, neutralization-resistant, pony-isolate envelope EIAV(PV564DeltaPND) that contains a 14-residue deletion in the designated principal neutralizing domain (PND) of the gp90 protein. Two ponies inoculated with a chimeric virus, EIAV(DeltaPND), containing the EIAV(PV564DeltaPND) envelope in a reference provirus strain, remained asymptomatic through 14 months post-inoculation, producing high steady-state levels of envelope-specific antibodies but no detectable serum-neutralizing antibodies. Consequent dexamethasone-induced immune suppression produced characteristic EIA that resolved concomitantly with the development of high-titre, strain-specific, neutralizing antibodies and a 100-fold reduction in steady-state virus loads. These results demonstrate: natural variations in the EIAV envelope have profound effects on both antigenic and immunogenic properties; the PND is not required for neutralizing antibody responses; and transient immune suppression can enhance established host immunity to achieve more effective control of steady-state lentivirus replication.


Journal of Virology | 2005

Discerning an Effective Balance between Equine Infectious Anemia Virus Attenuation and Vaccine Efficacy

Jodi K. Craigo; Feng Li; Jonathan D. Steckbeck; Shannon Durkin; L. Howe; Sheila J. Cook; Charles J. Issel; Ronald C. Montelaro

ABSTRACT Among the diverse experimental vaccines evaluated in various animal lentivirus models, live attenuated vaccines have proven to be the most effective, thus providing an important model for examining critical immune correlates of protective vaccine immunity. We previously reported that an experimental live attenuated vaccine for equine infectious anemia virus (EIAV), based on mutation of the viral S2 accessory gene, elicited protection from detectable infection by virulent virus challenge (F. Li et al., J. Virol. 77:7244-7253, 2003). To better understand the critical components of EIAV vaccine efficacy, we examine here the relationship between the extent of virus attenuation, the maturation of host immune responses, and vaccine efficacy in a comparative study of three related attenuated EIAV proviral vaccine strains: the previously described EIAVUKΔS2 derived from a virulent proviral clone, EIAVUKΔS2/DU containing a second gene mutation in the virulent proviral clone, and EIAVPRΔS2 derived from a reference avirulent proviral clone. Inoculations of parallel groups of eight horses resulted in relatively low levels of viral replication (average of 102 to 103 RNA copies/ml) and a similar maturation of EIAV envelope-specific antibody responses as determined in quantitative and qualitative serological assays. However, experimental challenge of the experimentally immunized horses by our standard virulent EIAVPV strain by using a low-dose multiple exposure protocol (three inoculations with 10 median horse infective doses, administered intravenously) revealed a marked difference in the protective efficacy of the various attenuated proviral vaccine strains that was evidently associated with the extent of vaccine virus attenuation, time of viral challenge, and the apparent maturation of virus-specific immunity.


Antimicrobial Agents and Chemotherapy | 2015

Engineered Cationic Antimicrobial Peptides To Overcome Multidrug Resistance by ESKAPE Pathogens

Berthony Deslouches; Jonathan D. Steckbeck; Jodi K. Craigo; Yohei Doi; Jane L. Burns; Ronald C. Montelaro

ABSTRACT Multidrug resistance constitutes a threat to the medical achievements of the last 50 years. In this study, we demonstrated the abilities of two de novo engineered cationic antibiotic peptides (eCAPs), WLBU2 and WR12, to overcome resistance from 142 clinical isolates representing the most common multidrug-resistant (MDR) pathogens and to display a lower propensity to select for resistant bacteria in vitro compared to that with colistin and LL37. The results warrant an exploration of eCAPs for use in clinical settings.

Collaboration


Dive into the Jodi K. Craigo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phalguni Gupta

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Ding

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Ted M. Ross

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge