Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jodi L. McBride is active.

Publication


Featured researches published by Jodi L. McBride.


Nature | 2007

Transvascular delivery of small interfering RNA to the central nervous system

Priti Kumar; Haoquan Wu; Jodi L. McBride; Kyeong Eun Jung; Moon Hee Kim; Beverly L. Davidson; Sang Kyung Lee; Premlata Shankar; N. Manjunath

A major impediment in the treatment of neurological diseases is the presence of the blood–brain barrier, which precludes the entry of therapeutic molecules from blood to brain. Here we show that a short peptide derived from rabies virus glycoprotein (RVG) enables the transvascular delivery of small interfering RNA (siRNA) to the brain. This 29-amino-acid peptide specifically binds to the acetylcholine receptor expressed by neuronal cells. To enable siRNA binding, a chimaeric peptide was synthesized by adding nonamer arginine residues at the carboxy terminus of RVG. This RVG-9R peptide was able to bind and transduce siRNA to neuronal cells in vitro, resulting in efficient gene silencing. After intravenous injection into mice, RVG-9R delivered siRNA to the neuronal cells, resulting in specific gene silencing within the brain. Furthermore, intravenous treatment with RVG-9R-bound antiviral siRNA afforded robust protection against fatal viral encephalitis in mice. Repeated administration of RVG-9R-bound siRNA did not induce inflammatory cytokines or anti-peptide antibodies. Thus, RVG-9R provides a safe and noninvasive approach for the delivery of siRNA and potentially other therapeutic molecules across the blood–brain barrier.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Artificial miRNAs mitigate shRNA-mediated toxicity in the brain : Implications for the therapeutic development of RNAi

Jodi L. McBride; Ryan L. Boudreau; Scott Q. Harper; Patrick D. Staber; Alex Mas Monteys; Inâs Martins; Brian L. Gilmore; Haim Burstein; Richard W. Peluso; Barry Polisky; Barrie J. Carter; Beverly L. Davidson

Huntingtons disease (HD) is a fatal, dominant neurodegenerative disease caused by a polyglutamine repeat expansion in exon 1 of the HD gene, which encodes the huntingtin protein. We and others have shown that RNAi is a candidate therapy for HD because expression of inhibitory RNAs targeting mutant human HD transgenes improved neuropathology and behavioral deficits in HD mouse models. Here, we developed shRNAs targeting conserved sequences in human HD and mouse HD homolog (HDh) mRNAs to initiate preclinical testing in a knockin mouse model of HD. We screened 35 shRNAs in vitro and subsequently narrowed our focus to three candidates for in vivo testing. Unexpectedly, two active shRNAs induced significant neurotoxicity in mouse striatum, although HDh mRNA expression was reduced to similar levels by all three. Additionally, a control shRNA containing mismatches also induced toxicity, although it did not reduce HDh mRNA expression. Interestingly, the toxic shRNAs generated higher antisense RNA levels, compared with the nontoxic shRNA. These results demonstrate that the robust levels of antisense RNAs emerging from shRNA expression systems can be problematic in the mouse brain. Importantly, when sequences that were toxic in the context of shRNAs were placed into artificial microRNA (miRNA) expression systems, molecular and neuropathological readouts of neurotoxicity were significantly attenuated without compromising mouse HDh silencing efficacy. Thus, miRNA-based approaches may provide more appropriate biological tools for expressing inhibitory RNAs in the brain, the implications of which are crucial to the development of RNAi for both basic biological and therapeutic applications.


Molecular Therapy | 2009

Nonallele-specific Silencing of Mutant and Wild-type Huntingtin Demonstrates Therapeutic Efficacy in Huntington's Disease Mice

Ryan L. Boudreau; Jodi L. McBride; Inês Martins; Shihao Shen; Yi Xing; Barrie J. Carter; Beverly L. Davidson

Huntingtons disease (HD) is a fatal neurodegenerative disease caused by mutant huntingtin (htt) protein, and there are currently no effective treatments. Recently, we and others demonstrated that silencing mutant htt via RNA interference (RNAi) provides therapeutic benefit in HD mice. We have since found that silencing wild-type htt in adult mouse striatum is tolerated for at least 4 months. However, given the role of htt in various cellular processes, it remains unknown whether nonallele-specific silencing of both wild-type and mutant htt is a viable therapeutic strategy for HD. Here, we tested whether cosilencing wild-type and mutant htt provides therapeutic benefit and is tolerable in HD mice. After treatment, HD mice showed significant reductions in wild-type and mutant htt, and demonstrated improved motor coordination and survival. We performed transcriptional profiling to evaluate the effects of reducing wild-type htt in adult mouse striatum. We identified gene expression changes that are concordant with previously described roles for htt in various cellular processes. Also, several abnormally expressed transcripts associated with early-stage HD were differentially expressed in our studies, but intriguingly, those involved in neuronal function changed in opposing directions. Together, these encouraging and surprising findings support further testing of nonallele-specific RNAi therapeutics for HD.


The Journal of Comparative Neurology | 2004

Human neural stem cell transplants improve motor function in a rat model of Huntington's disease

Jodi L. McBride; Soshana Behrstock; Er Yun Chen; Rebekah J. Jakel; Irwin M. Siegel; Clive N. Svendsen; Jeffrey H. Kordower

The present study investigated the neuroanatomical and behavioral effects of human stem cell transplants into the striatum of quinolinic acid (QA)‐lesioned rats. Twenty‐four rats received unilateral QA (200 nM/μl) injections into the striatum. One week later, rats were transplanted with stem cells derived from human fetal cortex (12 weeks postconception) that were either 1) pretreated in culture media with the differentiating cytokine ciliary neurotrophic factor (CNTF; n = 9) or 2) allowed to grow in culture media alone (n = 7). Each rat was injected with a total of 200,000 cells. A third group of rats (n = 8) was given a sham injection of vehicle. Rats transplanted with human stem cells performed significantly better over the 8 weeks of testing on the cylinder test compared with those treated with vehicle (P ≤ 0.001). Stereological striatal volume analyses performed on Nissl‐stained sections revealed that rats transplanted with CNTF‐treated neurospheres had a 22% greater striatal volume on the lesioned side compared with those receiving transplants of untreated neurospheres (P = 0.0003) and a 26% greater striatal volume compared with rats injected with vehicle (P ≤ 0.0001). Numerous human nuclei‐positive cells were visualized in the striatum in both transplantation groups. Grafted cells were also observed in the globus pallidus, entopeduncular nucleus, and substantia nigra pars reticulata, areas of the basal ganglia receiving striatal projections. Some of the human nuclei‐positive cells coexpressed glial fibrillary acidic protein and NeuN, suggesting that they had differentiated into neurons and astrocytes. Taken together, these data demonstrate that striatal transplants of human fetal stem cells elicit behavioral and anatomical recovery in a rodent model of Huntingtons disease. J. Comp. Neurol. 475:211–219, 2004.


Human Molecular Genetics | 2012

Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease

Ulziibat P. Shirendeb; Marcus J. Calkins; Maria Manczak; Vishwanath Anekonda; Brett D. Dufour; Jodi L. McBride; Peizhong Mao; P. Hemachandra Reddy

The purpose of this study was to investigate the link between mutant huntingtin (Htt) and neuronal damage in relation to mitochondria in Huntingtons disease (HD). In an earlier study, we determined the relationship between mutant Htt and mitochondrial dynamics/synaptic viability in HD patients. We found mitochondrial loss, abnormal mitochondrial dynamics and mutant Htt association with mitochondria in HD patients. In the current study, we sought to expand on our previous findings and further elucidate the relationship between mutant Htt and mitochondrial and synaptic deficiencies. We hypothesized that mutant Htt, in association with mitochondria, alters mitochondrial dynamics, leading to mitochondrial fragmentation and defective axonal transport of mitochondria in HD neurons. In this study, using postmortem HD brains and primary neurons from transgenic BACHD mice, we identified mutant Htt interaction with the mitochondrial protein Drp1 and factors that cause abnormal mitochondrial dynamics, including GTPase Drp1 enzymatic activity. Further, using primary neurons from BACHD mice, for the first time, we studied axonal transport of mitochondria and synaptic degeneration. We also investigated the effect of mutant Htt aggregates and oligomers in synaptic and mitochondrial deficiencies in postmortem HD brains and primary neurons from BACHD mice. We found that mutant Htt interacts with Drp1, elevates GTPase Drp1 enzymatic activity, increases abnormal mitochondrial dynamics and results in defective anterograde mitochondrial movement and synaptic deficiencies. These observations support our hypothesis and provide data that can be utilized to develop therapeutic targets that are capable of inhibiting mutant Htt interaction with Drp1, decreasing mitochondrial fragmentation, enhancing axonal transport of mitochondria and protecting synapses from toxic insults caused by mutant Htt.


Molecular Therapy | 2011

Preclinical Safety of RNAi-Mediated HTT Suppression in the Rhesus Macaque as a Potential Therapy for Huntington's Disease

Jodi L. McBride; Mark R. Pitzer; Ryan L. Boudreau; Brett D. Dufour; Theodore Hobbs; Sergio R. Ojeda; Beverly L. Davidson

To date, a therapy for Huntingtons disease (HD), a genetic, neurodegenerative disorder, remains elusive. HD is characterized by cell loss in the basal ganglia, with particular damage to the putamen, an area of the brain responsible for initiating and refining motor movements. Consequently, patients exhibit a hyperkinetic movement disorder. RNA interference (RNAi) offers therapeutic potential for this disorder by reducing the expression of HTT, the disease-causing gene. We have previously demonstrated that partial suppression of both wild-type and mutant HTT in the striatum prevents behavioral and neuropathological abnormalities in rodent models of HD. However, given the role of HTT in various cellular processes, it remains unknown whether a partial suppression of both alleles will be safe in mammals whose neurophysiology, basal ganglia anatomy, and behavioral repertoire more closely resembles that of a human. Here, we investigate whether a partial reduction of HTT in the normal non-human primate putamen is safe. We demonstrate that a 45% reduction of rhesus HTT expression in the mid- and caudal putamen does not induce motor deficits, neuronal degeneration, astrogliosis, or an immune response. Together, these data suggest that partial suppression of wild-type HTT expression is well tolerated in the primate putamen and further supports RNAi as a therapy for HD.


Human Gene Therapy | 2008

Transduction of nonhuman primate brain with adeno-associated virus serotype 1: vector trafficking and immune response.

Piotr Hadaczek; John Forsayeth; Hanna Mirek; Keith Munson; John Bringas; Phil Pivirotto; Jodi L. McBride; Beverly L. Davidson; Krystof S. Bankiewicz

We used convection-enhanced delivery (CED) to characterize gene delivery mediated by adeno-associated virus type 1 (AAV1) by tracking expression of hrGFP (humanized green fluorescent protein from Renilla reniformis) into the striatum, basal forebrain, and corona radiata of monkey brain. Four cynomolgus monkeys received single infusions into corona radiata, putamen, and caudate. The other group (n = 4) received infusions into basal forebrain. Thirty days after infusion animals were killed and their brains were processed for immunohistochemical evaluation. Volumetric analysis of GFP-positive brain areas was performed. AAV1-hrGFP infusions resulted in approximately 550, 700, and 73 mm(3) coverage after infusion into corona radiata, striatum, and basal forebrain, respectively. Aside from targeted regions, other brain structures also showed GFP signal (internal and external globus pallidus, subthalamic nucleus), supporting the idea that AAV1 is actively trafficked to regions distal from the infusion site. In addition to neuronal transduction, a significant nonneuronal cell population was transduced by AAV1 vector; for example, oligodendrocytes in corona radiata and astrocytes in the striatum. We observed a strong humoral and cell-mediated response against AAV1-hrGFP in transduced monkeys irrespective of the anatomic location of the infusion, as evidenced by induction of circulating anti-AAV1 and anti-hrGFP antibodies, as well as infiltration of CD4(+) lymphocytes and upregulation of MHC-II in regions infused with vector. We conclude that transduction of antigen-presenting cells within the CNS is a likely cause of this response and that caution is warranted when foreign transgenes are used as reporters in gene therapy studies with vectors with broader tropism than AAV2.


The Journal of Neuroscience | 2008

Restoring Acid-sensing ion channel-1a in the amygdala of knock-out mice rescues fear memory but not unconditioned fear responses.

Matthew W. Coryell; Amanda M. Wunsch; Jill M. Haenfler; Jason E. Allen; Jodi L. McBride; Beverly L. Davidson; John A. Wemmie

Acid-sensing ion channel-1a (ASIC1a) contributes to multiple fear behaviors, however the site of ASIC1a action in behavior is not known. To explore a specific location of ASIC1a action, we expressed ASIC1a in the basolateral amygdala of ASIC1a–/– mice using viral vector-mediated gene transfer. This rescued context-dependent fear memory, but not the freezing deficit during training or the unconditioned fear response to predator odor. These data pinpoint the basolateral amygdala as the site where ASIC1a contributes to fear memory. They also discriminate fear memory from fear expressed during training and from unconditioned fear. Furthermore, this work illustrates a strategy for identifying discrete brain regions where specific genes contribute to complex behaviors.


Neurobiology of Disease | 2009

Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington's disease.

Shilpa Ramaswamy; Jodi L. McBride; Ina Han; Elizabeth Berry-Kravis; Lili Zhou; Christopher D. Herzog; Mehdi Gasmi; Raymond T. Bartus; Jeffrey H. Kordower

Members of the GDNF family of ligands, including neurturin (NTN), have been implicated as potential therapeutic agents for Huntingtons disease (HD). The present study examined the ability of CERE-120 (AAV2-NTN) to provide structural and functional protection in the N171-82Q transgenic HD mouse model. AAV2-NTN therapy attenuated rotorod deficits in this mutant relative to control treated transgenics (p<0.01). AAV2-NTN treatment significantly reduced the number of transgenic mice that exhibited clasping behavior and partially restored their stride lengths (both p<0.05). Stereological counts of NeuN-ir neurons revealed a significant neuroprotection in the striatum of AAV2-NTN treated relative to control treated transgenics (p<0.001). Most fascinating, stereological counts of NeuN-labeled cells in layers V-VI of prefrontal cortex revealed that intrastriatal AAV2-NTN administration prevented the loss of frontal cortical NeuN-ir neurons seen in transgenic mice (p<0.01). These data indicate that gene delivery of NTN may be a viable strategy for the treatment of this incurable disease.


Molecular Therapy | 2014

Intrajugular Vein Delivery of AAV9-RNAi Prevents Neuropathological Changes and Weight Loss in Huntington's Disease Mice

Brett D. Dufour; Catherine A Smith; Randall L. Clark; Timothy R Walker; Jodi L. McBride

Huntingtons disease (HD) is a fatal neurological disorder caused by a CAG repeat expansion in the HTT gene, which encodes a mutant huntingtin protein (mHTT). The mutation confers a toxic gain of function on huntingtin, leading to widespread neurodegeneration and inclusion formation in many brain regions. Although the hallmark symptom of HD is hyperkinesia stemming from striatal degeneration, several other brain regions are affected which cause psychiatric, cognitive, and metabolic symptoms. Additionally, mHTT expression in peripheral tissue is associated with skeletal muscle atrophy, cardiac failure, weight loss, and diabetes. We, and others, have demonstrated a prevention of motor symptoms in HD mice following direct striatal injection of adeno-associated viral vector (AAV) serotype 1 encoding an RNA interference (RNAi) construct targeting mutant HTT mRNA (mHTT). Here, we expand these efforts and demonstrate that an intrajugular vein injection of AAV serotype 9 (AAV9) expressing a mutant HTT-specific RNAi construct significantly reduced mHTT expression in multiple brain regions and peripheral tissues affected in HD. Correspondingly, this approach prevented atrophy and inclusion formation in key brain regions as well as the severe weight loss germane to HD transgenic mice. These results demonstrate that systemic delivery of AAV9-RNAi may provide more widespread clinical benefit for patients suffering from HD.

Collaboration


Dive into the Jodi L. McBride's collaboration.

Top Co-Authors

Avatar

Beverly L. Davidson

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brett D. Dufour

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Shilpa Ramaswamy

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mehdi Gasmi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Berry-Kravis

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lili Zhou

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge