Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jodie E. Moreau is active.

Publication


Featured researches published by Jodie E. Moreau.


Biomaterials | 2002

Silk matrix for tissue engineered anterior cruciate ligaments

Gregory H. Altman; Rebecca L. Horan; Helen H. Lu; Jodie E. Moreau; Ivan Martin; John C. Richmond; David L. Kaplan

A silk-fiber matrix was studied as a suitable material for tissue engineering anterior cruciate ligaments (ACL). The matrix was successfully designed to match the complex and demanding mechanical requirements of a native human ACL, including adequate fatigue performance. This protein matrix supported the attachment, expansion and differentiation of adult human progenitor bone marrow stromal cells based on scanning electron microscopy, DNA quantitation and the expression of collagen types I and III and tenascin-C markers. The results support the conclusion that properly prepared silkworm fiber matrices, aside from providing unique benefits in terms of mechanical properties as well as biocompatibility and slow degradability, can provide suitable biomaterial matrices for the support of adult stem cell differentiation toward ligament lineages. These results point toward this matrix as a new option for ACL repair to overcome current limitations with synthetic and other degradable materials.


Cancer Research | 2007

Tissue-Engineered Bone Serves as a Target for Metastasis of Human Breast Cancer in a Mouse Model

Jodie E. Moreau; Kristen Anderson; Joshua R. Mauney; Trang Nguyen; David L. Kaplan; Michael Rosenblatt

The high frequency and mortality associated with breast cancer metastasis to bone has motivated efforts to elucidate tumor-stroma interactions in the bone microenvironment contributing to invasion and proliferation of metastatic cells. The development of engineered tissues has prompted the integration of engineered bone scaffolds into animal models as potential targets for metastatic spread. Silk scaffolds were coupled with bone morphogenetic protein-2 (BMP-2), seeded with bone marrow stromal cells (BMSC), and maintained in culture for 7 weeks, 4 weeks, and 1 day before s.c. implant in a mouse model of human breast cancer metastasis from the orthotopic site. Following injection of SUM1315 cells into mouse mammary fat pads, tumor burden of implanted tissues was observed only in 1-day scaffolds. Scaffold development and implantation was then reinitiated to identify the elements of the engineered bone that contribute to metastatic spread. Untreated scaffolds were compared with BMP-2-coupled, BMSC-seeded, or BMP-2/BMSC-combined treatment. Migration of SUM1315 cells was detected in four of four mice bearing scaffolds with BMP-2 treatment and with BMSC treatment, respectively, whereas only one of six mice of the BMP-2/BMSC combination showed evidence of metastatic spread. Histology confirmed active matrix modeling and stromal cell/fibroblast infiltration in scaffolds positive for the presence of metastasis. These results show the first successful integration of engineered tissues in a model system of human breast cancer metastasis. This novel platform now can be used in continued investigation of the bone environment and stem cell contributions to the process of breast cancer metastasis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement

Hu Tao; Suk Won Hwang; Benedetto Marelli; Bo An; Jodie E. Moreau; Miaomiao Yang; Mark A. Brenckle; Stanley Kim; David L. Kaplan; John A. Rogers; Fiorenzo G. Omenetto

Significance We present the demonstration of in vivo operation of a subcutaneously implanted, resorbable electronic device. The remotely controlled device was wirelessly activated after implantation, successfully eliminating infection, and subsequently dissolving in the surrounding tissue. This approach is a first step for the development of a class of implantable, technological, biomedical devices that resorb harmlessly, eliminating the need for retrieval after use. A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period.


Nature Communications | 2014

The use of silk-based devices for fracture fixation

Gabriel S. Perrone; Gary G. Leisk; Tim Jia-Ching Lo; Jodie E. Moreau; Dylan S. Haas; Bernke J. Papenburg; Ethan B. Golden; Benjamin P. Partlow; Sharon E. Fox; Ahmed M. S. Ibrahim; Samuel J. Lin; David L. Kaplan

Metallic fixation systems are currently the gold standard for fracture fixation but have problems including stress shielding, palpability and temperature sensitivity. Recently, resorbable systems have gained interest because they avoid removal and may improve bone remodelling due to the lack of stress shielding. However, their use is limited to paediatric craniofacial procedures mainly due to the laborious implantation requirements. Here we prepare and characterize a new family of resorbable screws prepared from silk fibroin for craniofacial fracture repair. In vivo assessment in rat femurs shows the screws to be self-tapping, remain fixed in the bone for 4 and 8 weeks, exhibit biocompatibility and promote bone remodelling. The silk-based devices compare favourably with current poly-lactic-co-glycolic acid fixation systems, however, silk-based devices offer numerous advantages including ease of implantation, conformal fit to the repair site, sterilization by autoclaving and minimal inflammatory response.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds

Matthew B. Applegate; Jeannine Coburn; Benjamin P. Partlow; Jodie E. Moreau; Jessica P. Mondia; Benedetto Marelli; David L. Kaplan; Fiorenzo G. Omenetto

Significance In this paper we present results on 3D, multiscale laser machining of soft, transparent biomaterials suited for cellular growth and/or implantation. We use an ultrafast laser to generate high-resolution, 3D structures within the bulk of a transparent soft-biomaterial formulation that can support cell growth and allow cells to penetrate deep within the material. The structure is created by multiphoton absorption which, thanks to the clarity of the silk gels, is possible nearly 1 cm below the surface of the material. This depth represents an ∼10× improvement over other materials. The ability to create micrometer-scale voids over such a large volume has promising applications in the biomedical field and its efficacy was demonstrated both in vitro and in vivo. Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light–matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning techniques are ideally suited to reshape soft materials of biological relevance. We present here the use of relatively low-energy (< 2 nJ) ultrafast laser pulses to generate 2D and 3D multiscale patterns in soft silk protein hydrogels without exogenous or chemical cross-linkers. We find that high-resolution features can be generated within bulk hydrogels through nearly 1 cm of material, which is 1.5 orders of magnitude deeper than other biocompatible materials. Examples illustrating the materials, results, and the performance of the machined geometries in vitro and in vivo are presented to demonstrate the versatility of the approach.


Biomaterials | 2014

Characteristics of platelet gels combined with silk.

Isabella Pallotta; Jonathan A. Kluge; Jodie E. Moreau; Rossella Calabrese; David L. Kaplan; Alessandra Balduini

Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel-forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact.


Biomedical Optics Express | 2014

Synthesis and characterization of biocompatible nanodiamond-silk hybrid material

Asma Khalid; Rebecca Lodin; Peter Domachuk; Hu Tao; Jodie E. Moreau; David L. Kaplan; Fiorenzo G. Omenetto; Brant C. Gibson; Snjezana Tomljenovic-Hanic

A new hybrid material consisting of nanodiamonds (NDs) and silk has been synthesized and investigated. NDs can contain bright fluorescence centers, important for bioprobes to image biological structures at the nanoscale and silk provides a transparent, robust matrix for these nanoparticles in-vivo or in-vitro. The ND-silk hybrid films were determined to be highly transparent in the visible to near infrared wavelength range. The NDs embedded in silk exhibited significant enhancement of emission relative to air, correlating with theoretical predictions. Furthermore, animal toxicity tests confirmed ND-silk films to be non-toxic in an in-vivo mice model.


Annals of the New York Academy of Sciences | 2007

Studies of Osteotropism on Both Sides of the Breast Cancer-Bone Interaction

Jodie E. Moreau; Kristen Anderson; Joshua R. Mauney; David L. Kaplan; Michael Rosenblatt

Abstract:  While important advances have been made in the treatment of breast cancer (BrCa), little progress has been made in developing therapies for metastasis to bone, a complication that signals entry of the disease into an incurable phase. The process of identifying genes and gene signatures of BrCa associated with metastasis has begun. In contrast, knowledge of the contributions of bone to tumor–stroma interaction is still rudimentary. We are performing research designed to elucidate the mechanisms by which human BrCa metastasizes to bone (osteotropism). With evidence mounting that there is mutual recognition of BrCa and bone, we are investigating osteotropism from both sides of the tumor–stroma interface. We created a novel “all human” model in which human bone is transplanted into immunodeficient (NOD/SCID) mice. Human BrCa cells are injected into the mammary fat pad. Metastases later appear as metastases in the human bone, but not mouse skeleton. The model recapitulates the metastatic sequence occurring in patients. Using DNA microarrays, we plan to identify putative osteotropic genes expressed by metastatic BrCa cells. We will test the hypothesis that distinct “tool kits” are used by BrCa metastasizing to human bone. In addition, using human tissue‐engineered bone, we are identifying components within bone stroma essential for metastasis, and osteotropism genes expressed by bone in response to the presence of BrCa. We recently demonstrated that tissue‐engineered bone based on a silk sponge platform is a target for human BrCa metastasis, even in preference to the mouse skeleton.


Advanced Healthcare Materials | 2017

Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration.

Joseph E. Brown; Jodie E. Moreau; Alison M. Berman; Heather J. McSherry; Jeannine Coburn; Daniel Schmidt; David L. Kaplan

&NA; Porous silk protein scaffolds are designed to display shape memory characteristics and volumetric recovery following compression. Two strategies are utilized to realize shape recovery: addition of hygroscopic plasticizers like glycerol, and tyrosine modifications with hydrophilic sulfonic acid chemistries. Silk sponges are evaluated for recovery following 80% compressive strain, total porosity, pore size distribution, secondary structure development, in vivo volume retention, cell infiltration, and inflammatory responses. Glycerol‐modified sponges recover up to 98.3% of their original dimensions following compression, while sulfonic acid/glycerol modified sponges swell in water up to 71 times their compressed volume, well in excess of their original size. Longer silk extraction times (lower silk molecular weights) and higher glycerol concentrations yielded greater flexibility and shape fidelity, with no loss in modulus following compression. Sponges are over 95% porous, with secondary structure analysis indicating glycerol‐induced β‐sheet physical crosslinking. Tyrosine modifications with sulfonic acid interfere with β‐sheet formation. Glycerol‐modified sponges exhibit improved rates of cellular infiltration at subcutaneous implant sites with minimal immune response in mice. They also degrade more rapidly than unmodified sponges, a result posited to be cell‐mediated. Overall, this work suggests that silk sponges may be useful for minimally invasive deployment in soft tissue augmentation procedures. &NA; Silk protein sponges show enhanced shape memory properties and elasticity when modified with hydrophilic plasticizers, making them ideal for minimally invasive deployment in soft tissue augmentation procedures. Figure. No caption available.


Journal of Biomedical Materials Research Part B | 2015

Equine Model for Soft Tissue Regeneration

Evangelia Bellas; Amanda Rollins; Jodie E. Moreau; Tim Jia-Ching Lo; Kyle P. Quinn; Nicholas Fourligas; Irene Georgakoudi; Gary G. Leisk; Melissa R. Mazan; Kristen Thane; Olivier Taeymans; A. M. Hoffman; David L. Kaplan; Carl A. Kirker-Head

Soft-tissue regeneration methods currently yield suboptimal clinical outcomes due to loss of tissue volume and a lack of functional tissue regeneration. Grafted tissues and natural biomaterials often degrade or resorb too quickly, while most synthetic materials do not degrade. In previous research we demonstrated that soft-tissue regeneration can be supported using silk porous biomaterials for at least 18 months in vivo in a rodent model. In the present study, we scaled the system to a survival study using a large animal model and demonstrated the feasibility of these biomaterials for soft-tissue regeneration in adult horses. Both slow and rapidly degrading silk matrices were evaluated in subcutaneous pocket and intramuscular defect depots. We showed that we can effectively employ an equine model over 6 months to simultaneously evaluate many different implants, reducing the number of animals needed. Furthermore, we were able to tailor matrix degradation by varying the initial format of the implanted silk. Finally, we demonstrate ultrasound imaging of implants to be an effective means for tracking tissue regeneration and implant degradation.

Collaboration


Dive into the Jodie E. Moreau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge