Jody L. Baron
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jody L. Baron.
Journal of Cell Biology | 2002
Dezhi Mu; Stephanie Cambier; Lars Fjellbirkeland; Jody L. Baron; John S. Munger; Hisaaki Kawakatsu; Dean Sheppard; V. Courtney Broaddus; Stephen L. Nishimura
Întegrins, matrix metalloproteases (MMPs), and the cytokine TGF-β have each been implicated in homeostatic cell behaviors such as cell growth and matrix remodeling. TGF-β exists mainly in a latent state, and a major point of homeostatic control is the activation of TGF-β. Because the latent domain of TGF-β1 possesses an integrin binding motif (RGD), integrins have the potential to sequester latent TGF-β (SLC) to the cell surface where TGF-β activation could be locally controlled. Here, we show that SLC binds to αvβ8, an integrin expressed by normal epithelial and neuronal cells in vivo. This binding results in the membrane type 1 (MT1)-MMP–dependent release of active TGF-β, which leads to autocrine and paracrine effects on cell growth and matrix production. These data elucidate a novel mechanism of cellular homeostasis achieved through the coordination of the activities of members of three major gene families involved in cell–matrix interactions.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Adelheid Cerwenka; Jody L. Baron; Lewis L. Lanier
In 1986, Kärre and colleagues reported that natural killer (NK) cells rejected an MHC class I-deficient tumor cell line (RMA-S) but they did not reject the same cell line if it expressed MHC class I (RMA). Based on this observation, they proposed the concept that NK cells provide immune surveillance for “missing self,” e.g., they eliminate cells that have lost class I MHC antigens. This seminal observation predicted the existence of inhibitory NK cell receptors for MHC class I. Here, we present evidence that NK cells are able to reject tumors expressing MHC class I if the tumor expresses a ligand for NKG2D. Mock-transfected RMA cells resulted in tumor formation. In contrast, when RMA cells were transfected with the retinoic acid early inducible gene-1 γ or δ (RAE-1), ligands for the activating receptor NKG2D, the tumors were rejected. The tumor rejection was mediated by NK cells, and not by CD1-restricted NK1.1+ T cells. No T cell-mediated immunological memory against the parental tumor was generated in the animals that had rejected the RAE-1 transfected tumors, which succumbed to rechallenge with the parental RMA tumor. Therefore, NK cells are able to reject a tumor expressing RAE-1 molecules, despite expression of self MHC class I on the tumor, demonstrating the potential for NK cells to participate in immunity against class I-bearing malignancies.
Journal of Experimental Medicine | 2003
Daniel B. Stetson; Markus Mohrs; R. Lee Reinhardt; Jody L. Baron; Zhi En Wang; Laurent Gapin; Mitchell Kronenberg; Richard M. Locksley
Natural killer (NK) and NK T cells are tissue lymphocytes that secrete cytokines rapidly upon stimulation. Here, we show that these cells maintain distinct patterns of constitutive cytokine mRNAs. Unlike conventional T cells, NK T cells activate interleukin (IL)-4 and interferon (IFN)-γ transcription during thymic development and populate the periphery with both cytokine loci previously modified by histone acetylation. Similarly, NK cells transcribe and modify the IFN-γ gene, but not IL-4, during developmental maturation in the bone marrow. Lineage-specific patterns of cytokine transcripts predate infection and suggest evolutionary selection for invariant but distinct types of effector responses among the earliest responding lymphocytes.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Jennifer L. Matsuda; Laurent Gapin; Jody L. Baron; Stephane Sidobre; Daniel B. Stetson; Markus Mohrs; Richard M. Locksley; Mitchell Kronenberg
Under different circumstances, natural killer T (NKT) cells can cause a T helper (Th) 1 or a Th2 polarization of immune responses. We show here, however, that mouse NKT cells with an invariant Vα14 rearrangement (Vα14i NKT cells) rapidly produce both IL-4 and IFN-γ, and this pattern could not be altered by methods that polarize naive CD4+ T cells. Surprisingly, although cytokine protein was detected only after activation, resting Vα14i NKT cells contained IL-4 and IFN-γ mRNAs. Despite this finding, in vivo priming of mice with the glycolipid antigen recognized by Vα14i NKT cells resulted in a more Th2-oriented response upon antigen re-exposure. The Vα14i NKT cells from primed mice retain the ability to produce IL-4 and IFN-γ, but they are less effective at activating NK cells to produce IFN-γ. Our data therefore indicate that Vα14i NKT cells have a relatively inflexible immediate cytokine response, but that changes in their ability to induce IFN-γ secretion by NK cells may determine the extent to which they promote Th1 responses.
Immunity | 2002
Jody L. Baron; Leon Gardiner; Stephen L. Nishimura; Kanade Shinkai; Richard M. Locksley; Don Ganem
NKT cells are specialized cells of the immune system that bear both T cell and NK cell markers. Classical NKT cells display TCRs of restricted heterogeneity (Valpha14-Jalpha281) and recognize lipid antigens (e.g., alpha-galactosyl ceramide) presented by nonpolymorphic CD1 molecules. Recently, other nonclassical NKT subsets have been recognized, including NKT cells not reactive with CD1d-alpha-galactosyl ceramide complexes. The biological functions of these cells are unknown. Here, we show that nonclassical NKT cells that are CD1d restricted but nonreactive to alpha-GalCer are activated in response to hepatocytes expressing hepatitis B viral antigens in a transgenic mouse model of acute hepatitis B virus infection. Our results document the first in vivo function for such nonclassical NKT cells and suggest a role for these cells in the host response to HBV infection.
Nature Medicine | 2012
Sebastian Zeissig; Kazumoto Murata; Lindsay Sweet; Zongyi Hu; Arthur Kaser; Esther Bosse; Jahangir Iqbal; M. Mahmood Hussain; Katharina Balschun; Christoph Röcken; Alexander Arlt; Rainer Günther; Jochen Hampe; Stefan Schreiber; Jody L. Baron; D. Branch Moody; T. Jake Liang; Richard S. Blumberg
In most adult humans, hepatitis B is a self-limiting disease leading to life-long protective immunity, which is the consequence of a robust adaptive immune response occurring weeks after hepatitis B virus (HBV) infection. Notably, HBV-specific T cells can be detected shortly after infection, but the mechanisms underlying this early immune priming and its consequences for subsequent control of viral replication are poorly understood. Using primary human and mouse hepatocytes and mouse models of transgenic and adenoviral HBV expression, we show that HBV-expressing hepatocytes produce endoplasmic reticulum (ER)-associated endogenous antigenic lipids including lysophospholipids that are generated by HBV-induced secretory phospholipases and that lead to activation of natural killer T (NKT) cells. The absence of NKT cells or CD1d or a defect in ER-associated transfer of lipids onto CD1d results in diminished HBV-specific T and B cell responses and delayed viral control in mice. NKT cells may therefore contribute to control of HBV infection through sensing of HBV-induced modified self-lipids.
Journal of Clinical Investigation | 1994
Jody L. Baron; Eva-Pia Reich; Irene Visintin; Charles A Janeway
An adoptive transfer model of insulin-dependent diabetes mellitus (IDDM) in the nonobese diabetic mouse was used to examine the roles of alpha 4-integrin, vascular cell adhesion molecule 1 (VCAM-1); and intercellular adhesion molecule 1 (ICAM-1) in the pathogenesis of autoimmune diabetes. Antibodies specific for both alpha 4-integrin and one of its ligands, VCAM-1, were able to delay onset of diabetes and decrease the incidence of the disease in adoptive transfer studies. This blocking of disease was accompanied by a marked decrease in lymphocytic infiltration of the islets of Langerhans. Furthermore, these antibodies preferentially block entrance of CD4 T cells into the tissue. Antibodies specific for ICAM-1 had little effect on the onset or incidence of IDDM. Thus, we conclude that an alpha 4-integrin-VCAM-1 interaction is important in T cell entry into the islets of Langerhans and in the pathogenesis of IDDM. In addition, the cascade of events leading to T cell transit across endothelium may be different for CD4 and CD8 cells, and may differ depending on the endothelium involved. Our results support the more general conclusion that an alpha 4-integrin-VCAM-1 interaction may be crucial in allowing activated effector CD4T cells to leave the blood and enter tissue to clear infection.
Journal of Clinical Investigation | 2011
Hideya Kitamura; Stephanie Cambier; Sangeeta Somanath; Tyren Barker; Shunsuke Minagawa; Jennifer A. Markovics; Amanda Goodsell; Louis F. Reichardt; David M. Jablons; Paul J. Wolters; Arthur Hill; James D. Marks; Jianlong Lou; Jean-Francois Pittet; Jack Gauldie; Jody L. Baron; Stephen L. Nishimura
The airway is a primary portal of entry for noxious environmental stimuli that can trigger airway remodeling, which contributes significantly to airway obstruction in chronic obstructive pulmonary disease (COPD) and chronic asthma. Important pathologic components of airway remodeling include fibrosis and abnormal innate and adaptive immune responses. The positioning of fibroblasts in interstitial spaces suggests that they could participate in both fibrosis and chemokine regulation of the trafficking of immune cells such as dendritic cells, which are crucial antigen-presenting cells. However, physiological evidence for this dual role for fibroblasts is lacking. Here, in two physiologically relevant models - conditional deletion in mouse fibroblasts of the TGF-β-activating integrin αvβ8 and neutralization of αvβ8 in human COPD fibroblasts - we have elucidated a mechanism whereby lung fibroblast chemokine secretion directs dendritic cell trafficking, in a manner that is critically dependent on αvβ8-mediated activation of TGF-β by fibroblasts. Our data therefore indicate that fibroblasts have a crucial role in regulating both fibrotic and immune responses in the lung.
Proceedings of the National Academy of Sciences of the United States of America | 2007
SÃlvia Vilarinho; Kouetsu Ogasawara; Stephen L. Nishimura; Lewis L. Lanier; Jody L. Baron
Hepatitis B virus (HBV) is a hepadnavirus that is a major cause of acute and chronic hepatitis in humans. Hepatitis B viral infection itself is noncytopathic, and it is the immune response to the viral antigens that is thought to be responsible for hepatic pathology. Previously, we developed a transgenic mouse model of primary HBV infection and demonstrated that the acute liver injury is mediated by nonclassical natural killer (NK)T cells, which are CD1d-restricted, but nonreactive to α-GalCer. We now demonstrate a role for NKG2D and its ligands in this nonclassical NKT cell-mediated immune response to hepatitis B virus and in the subsequent acute hepatitis that ensues. Surface expression of NKG2D and one of its ligands (retinoic acid early inducible-1 or RAE-1) are modulated in an HBV-dependent manner. Furthermore, blockade of an NKG2D–ligand interaction completely prevents the HBV- and CD1d-dependent, nonclassical NKT cell-mediated acute hepatitis and liver injury. This study has major implications for understanding activation of NKT cells and identifies a potential therapeutic target in treating hepatitis B viral infection.
Journal of Clinical Investigation | 2011
Amanda Goodsell; Stephen L. Nishimura; Silvia Vilarinho; Zhi-en Wang; Lia Avanesyan; Rosanne Spolski; Warren J. Leonard; Stewart Cooper; Jody L. Baron
HBV is a noncytopathic hepadnavirus and major human pathogen that causes immune-mediated acute and chronic hepatitis. The immune response to HBV antigens is age dependent: viral clearance occurs in most adults, while neonates and children usually develop chronic infection and liver disease. Here, we characterize an animal model for HBV infection that recapitulates the key differences in viral clearance between early life and adulthood and find that IL-21 may be part of an effective primary hepatic immune response to HBV. In our model, adult mice showed higher HBV-dependent IL-21 production in liver, compared with that of young mice. Conversely, absence of the IL-21 receptor in adult mice resulted in antigen persistence akin to that of young mice. In humans, levels of IL-21 transcripts were greatly increased in blood samples from acutely infected adults who clear the virus. These observations suggest a different model for the dichotomous, age dependent outcome of HBV infection in humans, in which decreased IL-21 production in younger patients may hinder generation of crucial CD8+ T and B cell responses. These findings carry implications for therapeutic augmentation of immune responses to HBV and potentially other persistent liver viruses.