Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jody M. Webster is active.

Publication


Featured researches published by Jody M. Webster.


Sedimentary Geology | 2003

Coral variation in two deep drill cores: significance for the Pleistocene development of the Great Barrier Reef

Jody M. Webster; Peter J. Davies

Abstract Variations in lithology and coral assemblages in drill cores from outer- and inner-shelf reefs are used to characterize the Pleistocene development of the Great Barrier Reef. Based on petrographic, isotopic and seismic characteristics, the outer-shelf core from Ribbon Reef 5 is divided into three sections: (1) a main reef section from 0 to 96 m is composed of six reef units, (2) a rhodolith section from 96 to 158 m is interbedded with two thin reef units and (3) a basal section from 158 to 210 m is composed of non-reefal skeletal grainstones and packstones. Two distinct coral assemblages identified in this core represent a shallow, high-energy community and lower-energy community. These two assemblages are repeated throughout the main reef section, with some units recording transitions between assemblages, and others composed of only a single assemblage. These coral assemblage data also correlate with transitions recorded by coralline algae. Using similar criteria, the inner-shelf core from Boulder Reef is divided into two sections: (1) an upper carbonate-dominated section from 0 to 34 m is comprised of four reef units and (2) an underlying mud section from 34 to 86 m is composed of siliciclastics and two thin, coral-bearing units. The four reef units in the upper section are dominated by a single coral assemblage representing a community typical of low energy, turbid environments. Taken together, these data indicate that: (1) reef growth on the inner shelf initiated later than on the outer shelf, (2) true reef ‘turn-on’ in outer shelf areas, as represented by the main reef section in Ribbon Reef 5, was preceded by a transitional period of intermittent reef development and (3) the repeated occurrence of similar coral assemblages in both drill cores indicates that the Great Barrier Reef has been able to re-establish itself, repeatedly producing reefs of similar composition over the last 500 ky, despite major environmental fluctuations in sea level and perhaps temperature.


Geology | 2004

Drowning of the -150 m reef off Hawaii: A Casualty of global meltwater pulse 1A?

Jody M. Webster; David A. Clague; Kristin E. Riker-Coleman; Christina D. Gallup; Juan C. Braga; Donald C. Potts; James G. Moore; Edward L. Winterer; Charles K. Paull

We present evidence that the drowning of the 2150 m coral reef around Hawaii was caused by rapid sea-level rise associated with meltwater pulse 1A (MWP-1A) during the last deglaciation. New U/Th and 14 C accelerator mass spectrometry dates, combined with reinterpretation of existing radiometric dates, constrain the age of the coral reef to 15.2-14.7 ka (U/Th age), indicating that reef growth persisted for 4.3 k.y. following the end of the Last Glacial Maximum at 19 ka. The drowning age of the reef is roughly synchronous with the onset of MWP-1A between 14.7 and 14.2 ka. Dates from coralline algal material range from 14 to 10 cal ka (calibrated radiocarbon age), 1-4 k.y. younger than the coral ages. A paleoenvironmental reconstruction incorporating all available radiometric dates, high-resolution bathymetry, dive observations, and coralgal paleobathymetry data indicates a dramatic rise in sea level around Hawaii ca. 14.7 ka. Paleowater depths over the reef crest increased rapidly above a critical depth (30-40 m), drowning the shallow reef-building Porites corals and causing a shift to deep- water coralline algal growth, preserved as a crust on the drowned reef crest.


Marine Geology | 2004

Coralgal composition of drowned carbonate platforms in the Huon Gulf, Papua New Guinea; Implications for lowstand reef development and drowning

Jody M. Webster; Laura M. Wallace; Eli A. Silver; Donald C. Potts; Juan C. Braga; Willem Renema; Kristin E. Riker-Coleman; Christina D. Gallup

Abstract Collision between the South Bismarck plate and the northern edge of the Australian plate has produced an actively subsiding foreland basin in the western Huon Gulf. A series of drowned carbonate platforms and pinnacles are preserved on this margin due to a combination of this rapid subsidence and eustatic sea-level changes over the last 450 ka. We analyzed sedimentary and coralgal data from the platforms to better understand lowstand reef development and drowning in the Huon Gulf. The recovered limestones are divided into five main sedimentary facies: coral reef, coralline–foraminiferal nodule, coralline–foraminiferal crust, Halimeda , and planktonic foraminiferal limestones. Based on a comparison with modern analogues in the Indo-Pacific and elsewhere, we identified coral reef, deep fore-reef slope, deeper fore-reef slope, and pelagic/hemipelagic paleoenvironmental settings. An analysis of facies relationships and their paleoenvironmental meanings revealed lowstand corals reefs preserved at the top of the platforms that grew within ∼10 m of sea level. Two different coral assemblages were identified within this facies: (1) a shallow, high energy reef community characteristic of windward margins and limited to the deep platforms (1947, 2121, 2393 m), and (2) another shallow community but indicative of more moderate lower energy reef conditions and limited to the middle (1113, 1217, 1612 m) and shallow platforms (823 m). The change from high to lower energy reef growth conditions suggests that oceanographic/climatic conditions in the Huon Gulf have changed substantially through time, primarily through the closure of the Gulf as a result of tectonic rotation and uplift of the Huon Peninsula over the last 450 ka. Despite major environmental perturbations (i.e. relative sea-level and temperature changes) the platforms and the shallow water coral reefs exposed at the top have been able to re-establish themselves time and time again over the last 450 ka. We also identified two different incipient drowning scenarios influenced by the rate of relative sea-level rise. More rapid drowning in the middle and deep platforms produced a thin veneer of coralline–foraminiferal nodule and Halimeda limestones over the shallow coral reef material while the slower drowning experienced by the shallowest platforms allowed thick coralline–foraminiferal crust limestones to develop. We recognize three main stages of platform development: (1) initiation and growth characterized by shallow coral reef growth as the platforms grew close to sea level during the lowstands, (2) incipient drowning marked by a shift to coralline–foraminiferal nodule, crust and Halimeda limestones as the platforms began to drown during rapid eustatic sea-level rise and continued subsidence, and (3) the complete drowning of the platforms characterized by platform ‘turn off’, increased bioerosion, Fe–Mn precipitation and pelagic/hemipelagic sedimentation as the platform surfaces finally drop below the photic zone.


Geology | 2012

Reef response to sea-level and environmental changes during the last deglaciation: Integrated Ocean Drilling Program Expedition 310, Tahiti Sea Level

Gilbert Camoin; Claire Seard; Pierre Deschamps; Jody M. Webster; Elizabeth Abbey; Juan C. Braga; Yasufumi Iryu; Nicolas Durand; Edouard Bard; Bruno Hamelin; Yusuke Yokoyama; Alexander L. Thomas; Gideon M. Henderson; Philippe Dussouillez

The last deglaciation is characterized by a rapid sea-level rise and coeval abrupt environmental changes. The Barbados coral reef record suggests that this period has been punctuated by two brief intervals of accelerated melting (meltwater pulses, MWP), occurring at 14.08–13.61 ka and 11.4–11.1 ka (calendar years before present), that are superimposed on a smooth and continuous rise of sea level. Although their timing, magnitude, and even existence have been debated, those catastrophic sea-level rises are thought to have induced distinct reef drowning events. The reef response to sea-level and environmental changes during the last deglacial sea-level rise at Tahiti is reconstructed based on a chronological, sedimentological, and paleobiological study of cores drilled through the relict reef features on the modern forereef slopes during the Integrated Ocean Drilling Program Expedition 310, complemented by results on previous cores drilled through the Papeete reef. Reefs accreted continuously between 16 and 10 ka, mostly through aggradational processes, at growth rates averaging 10 mm yr−1. No cessation of reef growth, even temporary, has been evidenced during this period at Tahiti. Changes in the composition of coralgal assemblages coincide with abrupt variations in reef growth rates and characterize the response of the upward-growing reef pile to nonmonotonous sea-level rise and coeval environmental changes. The sea-level jump during MWP 1A, 16 ± 2 m of magnitude in ∼350 yr, induced the retrogradation of shallow-water coral assemblages, gradual deepening, and incipient reef drowning. The Tahiti reef record does not support the occurrence of an abrupt reef drowning event coinciding with a sea-level pulse of ∼15 m, and implies an apparent rise of 40 mm yr−1 during the time interval corresponding to MWP 1B at Barbados.


Coral Reefs | 1998

Model of fringing reef development in response to progressive sea level fall over the last 7000 years - (Kikai-jima, Ryukyu Islands, Japan)

Jody M. Webster; Peter J. Davies; K. Konishi

Abstract Kikai-jima in the central Ryukyu Islands of Japan is fringed by exposed terraces of Holocene reefs, which formed as a result of periodic local tectonic uplift associated with subduction/collision. The terraces form four topographically distinct features (TI-IV) around the island and represent reefs that grew to sea level at 9000–6065 y BP, 6065–3390 y BP, 3790–2630 y BP, and 2870 to 1550 y BP. The modern reef terrace has been growing since approximately 1550 y BP. The reef terraces were uplifted sequentially around 6050 y BP (4 m), 3390–3790 y BP (2.5 m), 2630–2870 y BP (1 m) and 1550 y BP (2.5 m). Five sites were studied to define reef development in response to periodic relative sea level fall and different stillstand recovery periods. Thirty coral genera and 70 species were recorded from four distinct shallow reef flat to upper reef slope and one deeper reef slope coral assemblage. Significant lateral variations in total coral abundance, genera number, diversity, and the coverage density of Acropora spp. and Faviids occur both within and between the terraces. Stratigraphically, drill core and outcrop data recorded shallowing upward sequences characterised by tabulate Acropora spp. overlying massive Porites sp. and Faviids. The biological variations may represent growth strategies responding to initial colonisation, episodic perturbation (relative sea level fall) and differing recovery times during stillstands, and indicate a reef ecosystem stable and strong enough to recover after substantial perturbations. However, this study suggests that relatively small geological changes have had substantial biological effects, and modelling indicates that such changes would have been more profound had a third factor, such as substrate angle, varied more dramatically. In such a case, the drowning growth strategy exhibited in the drill core transect may have been more prevalent, and reefs would be struggling to grow around Kikai-jima today.


Nature Communications | 2014

Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum

Thomas Felis; Helen V. McGregor; Braddock K. Linsley; Alexander W. Tudhope; Michael K. Gagan; Atsushi Suzuki; Mayuri Inoue; Alexander L Thomas; Tezer M. Esat; William G. Thompson; Manish Tiwari; Donald C. Potts; Manfred Mudelsee; Yusuke Yokoyama; Jody M. Webster

Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1–2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.


PALAIOS | 2004

Holocene Deep Water Algal Buildups on the Eastern Australian Shelf

Peter J. Davies; Juan C. Braga; Michelle Lund; Jody M. Webster

Abstract Three cruises surveying the eastern Australian shelf revealed the occurrence of coralline algal buildups at depths between 80 and 120 m in tropical (Capricorn area) and subtropical (off Fraser Island) settings. The buildups, decimeters to several meters high, started to grow on an erosion surface during the Holocene transgression in water depths within ∼ 30 m of their present-day depth, and continued to present, as indicated by living covers of coralline algae. The buildup framework is a boundstone of encrusting coralline algae growing one over the other. The result is an open structure partially filled by mudstone to packstone internal sediment and minor marine cements, and affected by several phases of bioerosion. Mesophyllum is the main algal builder. Other melobesioids and Sporolithon appear in most samples. The tropical Capricorn buildups comprise algal assemblages slightly more diverse than the ones in the subtropical examples off Fraser Island. The buildup accretion involves many phases of framework growth, bioerosion, and sediment infilling at low average rates (maximum 2 to 3 cm/k.y.). These modern examples demonstrate that deep-water algal mounds can be coeval with shallow-water coral reefs and can be found in outer-platform and platform-edge deposits in ancient tropical platforms (e.g., Huon Gulf, Papua New Guinea). Upper Paleozoic phylloid algal mounds built by an open framework of Archaeolithophyllum crusts are similar to the northeastern Australian Mesophyllum-dominated boundstones, indicating they may have developed in similar deep-water, open-platform settings.


Ecology | 2010

Community dynamics of Pleistocene coral reefs during alternative climatic regimes

Danika Tager; Jody M. Webster; Donald C. Potts; Willem Renema; Juan C. Braga; John M. Pandolfi

Reef ecosystems built during successive periods of Pleistocene sea level rise have shown remarkable persistence in coral community structure, but little is known of the ecological characteristics of reef communities during periods of low sea stands or sea level falls. We sampled the relative species abundance of coral, benthic foraminifera, and calcareous red algae communities from eight submerged coral reefs in the Huon Gulf, Papua New Guinea, which formed during successive sea level fall and lowstand periods over the past approximately kyr. We found that dissimilarity in coral species composition increased significantly with increasing time between reef-building events. However, neither coral diversity nor the taxonomic composition of benthic foraminifera and calcareous red algae assemblages varied significantly over time. The taxonomic composition of coral communities from lowstand reefs was significantly different from that of highstand reefs previously reported from the nearby Huon Peninsula. We interpret the community composition and temporal dynamics of lowstand reefs as a result of shifting energy regimes in the Huon Gulf, and differences between low and highstand reefs as a result of differences in the interaction between biotic and environmental factors between the Huon Gulf and Huon Peninsula. Regardless of the exact processes driving these trends, our study represents the first glimpse into the ecological dynamics of coral reefs during low sea level stands when climatic conditions for reef growth were much different and less optimal than during previously studied highstand periods.


Eos, Transactions American Geophysical Union | 2008

From Corals to Canyons: The Great Barrier Reef Margin

Jody M. Webster; Robin J. Beaman; Tom C. L. Bridge; Peter J. Davies; Maria Byrne; Stefan B. Williams; Phil Manning; Oscar Pizarro; Kate Thornborough; Erika Woolsey; Alexander L. Thomas; Sandy Tudhope

The significance of submerged fossil coral reefs as important archives of abrupt global sea level rise and climate change has been confirmed by investigations in the Caribbean [Fairbanks, 1989] and the Indo-Pacific (see Montaggioni [2005] for a summary) and by recent Integrated Ocean Drilling Program (IODP) activities in Tahiti [Camoin et al., 2007]. Similar submerged (40-130 meters) reef structures are preserved along the margin of the Great Barrier Reef (GBR), but they have not yet been systematically studied. The submerged reefs have the potential to provide critical new information about the nature of past global sea level and climate variability and about the response of the GBR to these past and perhaps future environmental changes [Beaman et al., 2008]. Equally important for GBR Marine Park managers is information about the role of the reefs as habitats and substrates for modern biological communities. Here we summarize the highlights and broader implications of a September- October 2007 expedition on the R/V Southern Surveyor (Australian Marine National Facility, voyage SS07/2007) to investigate the shelf edge, upper slope, and submarine canyons along the GBR margin.


PLOS ONE | 2012

Predicting the Location and Spatial Extent of Submerged Coral Reef Habitat in the Great Barrier Reef World Heritage Area, Australia

Tom C. L. Bridge; Robin J. Beaman; Terry Done; Jody M. Webster

Aim Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef. Location Great Barrier Reef, Australia. Methods Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR. Results Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs. Main Conclusion Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used to identify these reefs, which may play an important role in resilience of the GBR ecosystem to climate change.

Collaboration


Dive into the Jody M. Webster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Clague

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge