Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joe A.I. Prinold is active.

Publication


Featured researches published by Joe A.I. Prinold.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2013

Musculoskeletal shoulder models: A technical review and proposals for research foci

Joe A.I. Prinold; Milad Masjedi; Garth Johnson; Anthony M. J. Bull

Musculoskeletal shoulder models allow non-invasive prediction of parameters that cannot be measured, particularly the loading applied to morphological structures and neurological control. This insight improves treatment and avoidance of pathology and performance evaluation and optimisation. A lack of appropriate validation and knowledge of model parameters’ accuracy may cause reduced clinical success for these models. Instrumented implants have recently been used to validate musculoskeletal models, adding important information to the literature. This development along with increasing prevalence of shoulder models necessitates a fresh review of available models and their utility. The practical uses of models are described. Accuracy of model inputs, modelling techniques and model sensitivity is the main technical review undertaken. Collection and comparison of these parameters are vital to understanding disagreement between model outputs. Trends in shoulder modelling are highlighted: validation through instrumented prostheses, increasing openness and strictly constrained, optimised, measured kinematics. Future directions are recommended: validation through focus on model sub-sections, increased subject specificity with imaging techniques determining muscle and body segment parameters and through different scaling and kinematics optimisation approaches.


Clinical Biomechanics | 2015

Shoulder muscle forces during driving: Sudden steering can load the rotator cuff beyond its repair limit

Petros Pandis; Joe A.I. Prinold; Anthony M. J. Bull

Background Driving is one of the most common everyday tasks and the rotator cuff muscles are the primary shoulder stabilisers. Muscle forces during driving are not currently known, yet knowledge of these would influence important clinical advice such as return to activities after surgery. The aim of this study is to quantify shoulder and rotator cuff muscle forces during driving in different postures. Methods A musculoskeletal modelling approach is taken, using a modified driving simulator in combination with an upper limb musculoskeletal model (UK National Shoulder Model). Motion data and external force vectors were model inputs and upper limb muscle and joint forces were the outputs. Findings Comparisons of the predicted glenohumeral joint forces were compared to in vivo literature values, with good agreement demonstrated (61 SD 8% body weight mean peak compared to 60 SD 1% body weight mean peak). High muscle activation was predicted in the rotator cuff muscles; particularly supraspinatus (mean 55% of the maximum and up to 164 SD 27 N). This level of loading is up to 72% of mean failure strength for supraspinatus repairs, and could therefore be dangerous for some cases. Statistically significant and large differences are shown to exist in the joint and muscle forces for different driving positions as well as steering with one or both hands (up to 46% body weight glenohumeral joint force). Interpretation These conclusions should be a key consideration in rehabilitating the shoulder after surgery, preventing specific upper limb injuries and predicting return to driving recommendations.


Clinical Biomechanics | 2013

The influence of extreme speeds on scapula kinematics and the importance of controlling the plane of elevation

Joe A.I. Prinold; Claire C. Villette; Anthony M. J. Bull

BACKGROUND The effect of high-speed movement on scapula kinematics is not clear from the literature. Understanding these effects is important for clinicians examining, managing and understanding scapula kinematic pathologies: impingement, glenohumeral instability, muscle patterning instability and athletic injuries. The scapula tracking methodology and the lack of quantified control of the movements plane of elevation limits previous studies. The aim of the present study is to use improved dynamic scapula kinematic measurement to assess differences during planar movements across different speeds. Athletic and maximal speeds, neglected in previous studies, are the focus. METHODS Thirteen subjects performed slow, fast and maximal scapula plane abduction and forward flexion. A previously validated skin-fixed scapula tracker was used and optimally calibrated. A stiff board controlled the plane of elevation. Scapula kinematics were consistent with the literature. FINDINGS Large and statistically significant differences were found to exist between scapula kinematics at slow speeds compared to fast and maximal speeds in lateral rotation and protraction. Although some differences were observed in the plane of elevation between speeds, these were not considered to effect the conclusions. INTERPRETATION The speed of movement should be considered an important factor affecting scapula kinematics. Clinical studies analysing muscle recruitment strategies and causes of injury in athletic tasks must account for changing kinematics rather than extrapolating slow or static measures and effective clinical examination and management of pathology must take these kinematic changes into account. Control of the plane of movement is challenging and its effectiveness must be quantified in future kinematic studies.


Journal of Biomechanics | 2014

Scaling and kinematics optimisation of the scapula and thorax in upper limb musculoskeletal models.

Joe A.I. Prinold; Anthony M. J. Bull

Accurate representation of individual scapula kinematics and subject geometries is vital in musculoskeletal models applied to upper limb pathology and performance. In applying individual kinematics to a model׳s cadaveric geometry, model constraints are commonly prescriptive. These rely on thorax scaling to effectively define the scapula׳s path but do not consider the area underneath the scapula in scaling, and assume a fixed conoid ligament length. These constraints may not allow continuous solutions or close agreement with directly measured kinematics. A novel method is presented to scale the thorax based on palpated scapula landmarks. The scapula and clavicle kinematics are optimised with the constraint that the scapula medial border does not penetrate the thorax. Conoid ligament length is not used as a constraint. This method is simulated in the UK National Shoulder Model and compared to four other methods, including the standard technique, during three pull-up techniques (n=11). These are high-performance activities covering a large range of motion. Model solutions without substantial jumps in the joint kinematics data were improved from 23% of trials with the standard method, to 100% of trials with the new method. Agreement with measured kinematics was significantly improved (more than 10° closer at p<0.001) when compared to standard methods. The removal of the conoid ligament constraint and the novel thorax scaling correction factor were shown to be key. Separation of the medial border of the scapula from the thorax was large, although this may be physiologically correct due to the high loads and high arm elevation angles.


Journal of Science and Medicine in Sport | 2016

Scapula kinematics of pull-up techniques: Avoiding impingement risk with training changes

Joe A.I. Prinold; Anthony M. J. Bull

Objectives Overhead athletic activities and scapula dyskinesia are linked with shoulder pathology; pull-ups are a common training method for some overhead sports. Different pull-up techniques exist: anecdotally some are easier to perform, and others linked to greater incidences of pathology. This study aims to quantify scapular kinematics and external forces for three pull-up techniques, thus discussing potential injury implications. Design An observational study was performed with eleven participants (age = 26.8 ± 2.4 years) who regularly perform pull-ups. Methods The upward motions of three pull-up techniques were analysed: palms facing anterior, palms facing posterior and wide-grip. A skin-fixed scapula tracking technique with attached retro-reflective markers was used. Results High intra-participant repeatability was observed: mean coefficients of multiple correlations of 0.87–1.00 in humerothoracic rotations and 0.77–0.90 for scapulothoracic rotations. Standard deviations of hand force was low: <5% body weight. Significantly different patterns of humerothoracic, scapulothoracic and glenohumeral kinematics were observed between the pull-up techniques. The reverse technique has extreme glenohumeral internal–external rotation and large deviation from the scapula plane. The wide technique has a reduced range of pro/retraction in the same HT plane of elevation and 90° of arm abduction with 45° external rotation was observed. All these factors suggest increased sub-acromial impingement risk. Conclusions The scapula tracking technique showed high repeatability. High arm elevation during pull-ups reduces sub-acromial space and increases pressure, increasing the risk of impingement injury. Wide and reverse pull-ups demonstrate kinematics patterns linked with increased impingement risk. Weight-assisted front pull-ups require further investigation and could be recommended for weaker participants.


Clinical Biomechanics | 2018

Analysis of shoulder compressive and shear forces during functional activities of daily life

Christian Klemt; Joe A.I. Prinold; Sharon Morgans; Samuel H.L. Smith; Daniel Nolte; Peter Reilly; Anthony M. J. Bull

Background: Knowledge of forces acting through the glenohumeral joint during activities of daily living is a prerequisite for improving implant design and aiding rehabilitation planning. Existing data are limited by the number of activities performed and, in some cases, the lack of representation of the glenohumeral loading direction, although high shear force components may cause joint dislocation or implant loosening. This study aims to analyse shoulder compression and shear force components during essential functional activities of daily living. Methods: This is a combined modelling and experimental study. Motion data and external forces measured from 25 participants for 26 activities of daily living serve as input into an upper limb musculoskeletal model that quantifies glenohumeral loading. Findings: The shoulder contact force exceeds 50% of the body weight in 10/26 activities of daily living with a maximum contact force of 164% of the body weight (SD 69%) for a sit to stand task. The ratio of glenohumeral shear force component to compression force component exceeds 0.5 in 8/26 functional activities, with maximum ratios for reaching across the body (1.09; SD 0.41) and pick and place an everyday object (0.88; SD 0.36). Interpretation: This study demonstrates substantial loads through the glenohumeral joint during activities of daily living. The ratios of glenohumeral shear force component to compression force component are considerable when high loads act at long lever arms and at high angles of arm elevation. These glenohumeral ratios represent a key component of loading that should be considered when designing implants, surgical procedures, or rehabilitation protocols.


Shoulder & Elbow | 2017

The influence of full-thickness supraspinatus tears on abduction moments: the importance of the central tendon:

Simon Thompson; Joe A.I. Prinold; Adam M. Hill; Peter Reilly; Roger Emery; Anthony M. J. Bull

Background Detachment of the central tendon of the supraspinatus from its insertion is considered to be crucial to functional deficit. The aim of the present study was to assess the function of the supraspinatus in terms of abduction moments by introducing different tear configurations to assess the functional effect of the central tendon insertion. Methods Ten fresh frozen shoulders from five cadavers were prepared for testing. A testing protocol was established to measure the abduction moment of the supraspinatus under physiological loading tailored to the anthropometrics of each specimen. Four conditions were tested: intact supraspinatus; complete detachment of portion of the supraspinatus tendon anterior to the main central tendon; detachment of the main central tendon; and detachment of the region of the supraspinatus posterior to the main central tendon. Results There was a significant and large reduction in abduction moment when the central tendon was sectioned (p < 0.05). A smaller reduction in abduction moment was found when the regions anterior and posterior to the main central tendon were sectioned (p < 0.05). Conclusions The central tendon is vital in the role of functional arm abduction through force transmission through the intact rotator cuff. Reinsertion of the central tendon in the correct anatomical location is desirable to optimize functional outcome of surgery.


Journal of Biomechanics | 2011

Skin-fixed scapula trackers: a comparison of two dynamic methods across a range of calibration positions.

Joe A.I. Prinold; Aliah F. Shaheen; Anthony M. J. Bull


international conference on universal access in human computer interaction | 2013

Effect of impairment on upper limb performance in an ageing sample population

Newton Howard; Ross D. Pollock; Joe A.I. Prinold; Joydeep Sinha; Di J. Newham; Jeroen H. M. Bergmann


Springer US | 2013

Universal Access in Human-Computer Interaction. User and Context Diversity

Newton Howard; Ross D. Pollock; Joe A.I. Prinold; Joydeep Sinha; Dianne Newham; Jeroen H. M. Bergmann

Collaboration


Dive into the Joe A.I. Prinold's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam M. Hill

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge