Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joe Win is active.

Publication


Featured researches published by Joe Win.


Nature | 2009

Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans

Brian J. Haas; Sophien Kamoun; Michael C. Zody; Rays H. Y. Jiang; Robert E. Handsaker; Liliana M. Cano; Manfred Grabherr; Chinnappa D. Kodira; Sylvain Raffaele; Trudy Torto-Alalibo; Tolga O. Bozkurt; Audrey M. V. Ah-Fong; Lucia Alvarado; Vicky L. Anderson; Miles R. Armstrong; Anna O. Avrova; Laura Baxter; Jim Beynon; Petra C. Boevink; Stephanie R. Bollmann; Jorunn I. B. Bos; Vincent Bulone; Guohong Cai; Cahid Cakir; James C. Carrington; Megan Chawner; Lucio Conti; Stefano Costanzo; Richard Ewan; Noah Fahlgren

Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world’s population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at


Science | 2010

Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome.

Laura Baxter; Sucheta Tripathy; Naveed Ishaque; Nico Boot; Adriana Cabral; Eric Kemen; Marco Thines; Audrey M. V. Ah-Fong; Ryan G. Anderson; Wole Badejoko; Peter D. Bittner-Eddy; Jeffrey L. Boore; Marcus C. Chibucos; Mary Coates; Paramvir Dehal; Kim D. Delehaunty; Suomeng Dong; Polly Downton; Bernard Dumas; Georgina Fabro; Catrina C. Fronick; Susan I. Fuerstenberg; Lucinda Fulton; Elodie Gaulin; Francine Govers; Linda Karen Hughes; Sean Humphray; Rays H. Y. Jiang; Howard S. Judelson; Sophien Kamoun

6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at ∼240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for ∼74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.


Genome Biology | 2010

Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire

C. André Lévesque; Henk Brouwer; Liliana M. Cano; John P. Hamilton; Carson Holt; Edgar Huitema; Sylvain Raffaele; Gregg P. Robideau; Marco Thines; Joe Win; Marcelo M. Zerillo; Jeffrey L. Boore; Dana Busam; Bernard Dumas; Steve Ferriera; Susan I. Fuerstenberg; Claire M. M. Gachon; Elodie Gaulin; Francine Govers; Laura J. Grenville-Briggs; Neil R. Horner; Jessica B. Hostetler; Rays H. Y. Jiang; Justin Johnson; Theerapong Krajaejun; Haining Lin; Harold J. G. Meijer; Barry Moore; Paul F. Morris; Vipaporn Phuntmart

From Blight to Powdery Mildew Pathogenic effects of microbes on plants have widespread consequences. Witness, for example, the cultural upheavals driven by potato blight in the 1800s. A variety of microbial pathogens continue to afflict crop plants today, driving both loss of yield and incurring the increased costs of control mechanisms. Now, four reports analyze microbial genomes in order to understand better how plant pathogens function (see the Perspective by Dodds). Raffaele et al. (p. 1540) describe how the genome of the potato blight pathogen accommodates transfer to different hosts. Spanu et al. (p. 1543) analyze what it takes to be an obligate biotroph in barley powdery mildew, and Baxter et al. (p. 1549) ask a similar question for a natural pathogen of Arabidopsis. Schirawski et al. (p. 1546) compared genomes of maize pathogens to identify virulence determinants. Better knowledge of what in a genome makes a pathogen efficient and deadly is likely to be useful for improving agricultural crop management and breeding. A group of papers analyzes pathogen genomes to find the roots of virulence, opportunism, and life-style determinants. Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.


The Plant Cell | 2007

Adaptive Evolution Has Targeted the C-Terminal Domain of the RXLR Effectors of Plant Pathogenic Oomycetes

Joe Win; William Morgan; Jorunn I. B. Bos; Ksenia V. Krasileva; Liliana M. Cano; Angela Chaparro-Garcia; Randa Ammar; Brian J. Staskawicz; Sophien Kamoun

BackgroundPythium ultimum is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species.ResultsThe P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions, although, surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host-specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome, including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report of these in a genome outside the metazoans.ConclusionsAccess to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage-specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae.


PLOS Genetics | 2010

A Functional Genomics Approach Identifies Candidate Effectors from the Aphid Species Myzus persicae (Green Peach Aphid)

Jorunn I. B. Bos; David C. Prince; Marco Pitino; Massimo Maffei; Joe Win; Saskia A. Hogenhout

Oomycete plant pathogens deliver effector proteins inside host cells to modulate plant defense circuitry and to enable parasitic colonization. These effectors are defined by a conserved motif, termed RXLR (for Arg, any amino acid, Leu, Arg), that is located downstream of the signal peptide and that has been implicated in host translocation. Because the phenotypes of RXLR effectors extend to plant cells, their genes are expected to be the direct target of the evolutionary forces that drive the antagonistic interplay between pathogen and host. We used the draft genome sequences of three oomycete plant pathogens, Phytophthora sojae, Phytophthora ramorum, and Hyaloperonospora parasitica, to generate genome-wide catalogs of RXLR effector genes and determine the extent to which these genes are under positive selection. These analyses revealed that the RXLR sequence is overrepresented and positionally constrained in the secretome of Phytophthora relative to other eukaryotes. The three examined plant pathogenic oomycetes carry complex and diverse sets of RXLR effector genes that have undergone relatively rapid birth and death evolution. We obtained robust evidence of positive selection in more than two-thirds of the examined paralog families of RXLR effectors. Positive selection has acted for the most part on the C-terminal region, consistent with the view that RXLR effectors are modular, with the N terminus involved in secretion and host translocation and the C-terminal domain dedicated to modulating host defenses inside plant cells.


Plant Physiology | 2006

A Phytophthora infestans Cystatin-Like Protein Targets a Novel Tomato Papain-Like Apoplastic Protease

Miaoying Tian; Joe Win; Jing Song; R. A. L. Van der Hoorn; E. van der Knaap; Sophien Kamoun

Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors) inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs) to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid), based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP)–mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX) expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we identified aphid salivary proteins that share features with plant pathogen effectors and therefore may function as aphid effectors by perturbing host cellular processes.


The Plant Cell | 2009

Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae.

Kentaro Yoshida; Hiromasa Saitoh; Shizuko Fujisawa; Hiroyuki Kanzaki; Hideo Matsumura; Kakoto Yoshida; Yukio Tosa; Izumi Chuma; Yoshitaka Takano; Joe Win; Sophien Kamoun; Ryohei Terauchi

There is emerging evidence that the proteolytic machinery of plants plays important roles in defense against pathogens. The oomycete pathogen Phytophthora infestans, the agent of the devastating late blight disease of tomato (Lycopersicon esculentum) and potato (Solanum tuberosum), has evolved an arsenal of protease inhibitors to overcome the action of host proteases. Previously, we described a family of 14 Kazal-like extracellular serine protease inhibitors from P. infestans. Among these, EPI1 and EPI10 bind and inhibit the pathogenesis-related (PR) P69B subtilisin-like serine protease of tomato. Here, we describe EPIC1 to EPIC4, a new family of P. infestans secreted proteins with similarity to cystatin-like protease inhibitor domains. Among these, the epiC1 and epiC2 genes lacked orthologs in Phytophthora sojae and Phytophthora ramorum, were relatively fast-evolving within P. infestans, and were up-regulated during infection of tomato, suggesting a role during P. infestans-host interactions. Biochemical functional analyses revealed that EPIC2B interacts with and inhibits a novel papain-like extracellular cysteine protease, termed Phytophthora Inhibited Protease 1 (PIP1). Characterization of PIP1 revealed that it is a PR protein closely related to Rcr3, a tomato apoplastic cysteine protease that functions in fungal resistance. Altogether, this and earlier studies suggest that interplay between host proteases of diverse catalytic families and pathogen inhibitors is a general defense-counterdefense process in plant-pathogen interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3

Jing Song; Joe Win; Miaoying Tian; Sebastian Schornack; Farnusch Kaschani; M. Ilyas; Renier A. L. van der Hoorn; Sophien Kamoun

To subvert rice (Oryza sativa) host defenses, the devastating ascomycete fungus pathogen Magnaporthe oryzae produces a battery of effector molecules, including some with avirulence (AVR) activity, which are recognized by host resistance (R) proteins resulting in rapid and effective activation of innate immunity. To isolate novel avirulence genes from M. oryzae, we examined DNA polymorphisms of secreted protein genes predicted from the genome sequence of isolate 70-15 and looked for an association with AVR activity. This large-scale study found significantly more presence/absence polymorphisms than nucleotide polymorphisms among 1032 putative secreted protein genes. Nucleotide diversity of M. oryzae among 46 isolates of a worldwide collection was extremely low (θ = 8.2 × 10−5), suggestive of recent pathogen dispersal. However, no association between DNA polymorphism and AVR was identified. Therefore, we used genome resequencing of Ina168, an M. oryzae isolate that contains nine AVR genes. Remarkably, a total of 1.68 Mb regions, comprising 316 candidate effector genes, were present in Ina168 but absent in the assembled sequence of isolate 70-15. Association analyses of these 316 genes revealed three novel AVR genes, AVR-Pia, AVR-Pii, and AVR-Pik/km/kp, corresponding to five previously known AVR genes, whose products are recognized inside rice cells possessing the cognate R genes. AVR-Pia and AVR-Pii have evolved by gene gain/loss processes, whereas AVR-Pik/km/kp has evolved by nucleotide substitutions and gene gain/loss.


The Plant Cell | 2009

In Planta Expression Screens of Phytophthora infestans RXLR Effectors Reveal Diverse Phenotypes, Including Activation of the Solanum bulbocastanum Disease Resistance Protein Rpi-blb2

Sang-Keun Oh; Carolyn A. Young; Minkyoung Lee; Ricardo Oliva; Tolga O. Bozkurt; Liliana M. Cano; Joe Win; Jorunn I. B. Bos; Hsin-Yin Liu; Mireille van Damme; William Morgan; Doil Choi; Edwin van der Vossen; Vivianne G. A. A. Vleeshouwers; Sophien Kamoun

Current models of plant–pathogen interactions stipulate that pathogens secrete effector proteins that disable plant defense components known as virulence targets. Occasionally, the perturbations caused by these effectors trigger innate immunity via plant disease resistance proteins as described by the “guard hypothesis.” This model is nicely illustrated by the interaction between the fungal plant pathogen Cladosporium fulvum and tomato. C. fulvum secretes a protease inhibitor Avr2 that targets the tomato cysteine protease Rcr3pim. In plants that carry the resistance protein Cf2, Rcr3pim is required for resistance to C. fulvum strains expressing Avr2, thus fulfilling one of the predictions of the guard hypothesis. Another prediction of the guard hypothesis has not yet been tested. Considering that virulence targets are important components of defense, different effectors from unrelated pathogens are expected to evolve to disable the same host target. In this study we confirm this prediction using a different pathogen of tomato, the oomycete Phytophthora infestans that is distantly related to fungi such as C. fulvum. This pathogen secretes an array of protease inhibitors including EPIC1 and EPIC2B that inhibit tomato cysteine proteases. Here we show that, similar to Avr2, EPIC1 and EPIC2B bind and inhibit Rcr3pim. However, unlike Avr2, EPIC1 and EPIC2B do not trigger hypersensitive cell death or defenses on Cf-2/Rcr3pim tomato. We also found that the rcr3–3 mutant of tomato that carries a premature stop codon in the Rcr3 gene exhibits enhanced susceptibility to P. infestans, suggesting a role for Rcr3pim in defense. In conclusion, our findings fulfill a key prediction of the guard hypothesis and suggest that the effectors Avr2, EPIC1, and EPIC2B secreted by two unrelated pathogens of tomato target the same defense protease Rcr3pim. In contrast to C. fulvum, P. infestans appears to have evolved stealthy effectors that carry inhibitory activity without triggering plant innate immunity.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface

Tolga O. Bozkurt; Sebastian Schornack; Joe Win; Takayuki Shindo; M. Ilyas; Ricardo Oliva; Liliana M. Cano; Alexandra M. E. Jones; Edgar Huitema; R. A. L. Van der Hoorn; Sophien Kamoun

The Irish potato famine pathogen Phytophthora infestans is predicted to secrete hundreds of effector proteins. To address the challenge of assigning biological functions to computationally predicted effector genes, we combined allele mining with high-throughput in planta expression. We developed a library of 62 infection-ready P. infestans RXLR effector clones, obtained using primer pairs corresponding to 32 genes and assigned activities to several of these genes. This approach revealed that 16 of the 62 examined effectors cause phenotypes when expressed inside plant cells. Besides the well-studied AVR3a effector, two additional effectors, PexRD8 and PexRD3645-1, suppressed the hypersensitive cell death triggered by the elicitin INF1, another secreted protein of P. infestans. One effector, PexRD2, promoted cell death in Nicotiana benthamiana and other solanaceous plants. Finally, two families of effectors induced hypersensitive cell death specifically in the presence of the Solanum bulbocastanum late blight resistance genes Rpi-blb1 and Rpi-blb2, thereby exhibiting the activities expected for Avrblb1 and Avrblb2. The AVRblb2 family was then studied in more detail and found to be highly variable and under diversifying selection in P. infestans. Structure-function experiments indicated that a 34–amino acid region in the C-terminal half of AVRblb2 is sufficient for triggering Rpi-blb2 hypersensitivity and that a single positively selected AVRblb2 residue is critical for recognition by Rpi-blb2.

Collaboration


Dive into the Joe Win's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Thines

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge