Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel A. Huey is active.

Publication


Featured researches published by Joel A. Huey.


Australian Journal of Entomology | 2017

Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia

Michael G. Rix; Joel A. Huey; Barbara York Main; Julianne M. Waldock; Sophie E. Harrison; Sarah Comer; Andrew D. Austin; Mark S. Harvey

Earth is currently experiencing the sixth mass extinction of complex multi‐cellular life, the first at the hands of a single species. The documented extinctions of iconic (mostly vertebrate and plant) taxa dominate the discourse, while poorly known invertebrate species are disappearing ‘silently’, sometimes without having ever been described. Here, we highlight the decline of elements of the trapdoor spider (Mygalomorphae: Idiopidae) fauna of southern Australia – a taxonomically poorly documented yet diverse assemblage of long‐lived fossorial predators. We show that a number of trapdoor spider species may be threatened after a century of intensive land clearing and stocking, and that remaining populations in some areas may be experiencing serious contemporary population declines. So, how do we conserve this fauna? We suggest that baseline systematic studies are crucial, and that follow‐up surveys, including integrative citizen science solutions, should be used to assess where remnant populations still exist, and whether they can persist into the future. Detailed population genetic research on a handful of carefully chosen taxa could be broadly informative, and ongoing natural history studies remain invaluable. Although solutions may be limited in the face of ongoing habitat degradation and other threats, urgently quantifying declines has implications not just for spiders but for mitigating against the mass extinction of poorly known invertebrate taxa across the globe.


Invertebrate Systematics | 2017

Molecular and morphological evidence for a new genus of small trapdoor spiders from arid Western Australia (Araneae:Mygalomorphae:Nemesiidae:Anaminae)

Mark A. Castalanelli; Joel A. Huey; Mia J. Hillyer; Mark S. Harvey

Abstract. The trapdoor spider family Nemesiidae comprises 14 genera in Australia, the majority of which are included in the subfamily Anaminae. Here we provide evidence from a multigene molecular analysis of most Australian genera of Anaminae for a previously unrecognised clade that also differs from its sister-genus, Aname L. Koch, by the lack of a prominent asetose ventral depression on the pedipalpal tibia and the medium-sized mating spur on tibia I of males. This depression is a characteristic of all species of Aname examined to date, and represents a newly recognised character system in the subfamily. The new genus, named Hesperonatalius, is represented by three new species – H. maxwelli, sp. nov., H. harrietae, sp. nov. and H. langlandsi, sp. nov. – all from arid Western Australia.


Invertebrate Systematics | 2016

The first troglobitic species of Gymnobisiidae (Pseudoscorpiones : Neobisioidea), from Table Mountain (Western Cape Province, South Africa) and its phylogenetic position

Mark S. Harvey; Joel A. Huey; Mia J. Hillyer; Erin McIntyre; Gonzalo Giribet

Abstract. Fully troglobitic pseudoscorpions are rare in the Afrotropical Region, and we explored the identity and phylogenetic relationships of specimens of a highly modified troglobite of the family Gymnobisiidae in the dark zone of the Wynberg Cave system, on Table Mountain, South Africa. This large pseudoscorpion – described as Gymnobisium inukshuk Harvey & Giribet, sp. nov. – lacks eyes and has extremely long appendages, and has been found together with other troglobitic fauna endemic only to this cave system. Phylogenetic analyses using the nuclear ribosomal genes 18S rRNA and 28S rRNA and the mitochondrial protein-encoding gene cytochrome c oxidase subunit I unambiguously place the new species with other surface Gymnobisium from South Africa. This placement receives strong support and is stable to analytical treatments, including static and dynamic homology, parsimony and maximum likelihood, and data removal for ambiguously aligned sites. This species is the first troglobitic species of the family and one of the most highly modified pseudoscorpions from the Afrotropical Region.


Invertebrate Systematics | 2018

Understanding subterranean variability: the first genus of Bathynellidae (Bathynellacea, Crustacea) from Western Australia described through a morphological and multigene approach

Giulia Perina; Ana Camacho; Joel A. Huey; Pierre Horwitz; Annette Koenders

Abstract. The number of subterranean taxa discovered in the north of Western Australia has substantially increased due to the requirements for environmental surveys related to mining development. Challenges in estimating subterranean biodiversity and distributions are related to lack of knowledge of taxa with convergent morphological characters in a largely unobservable ecosystem setting. An integrated approach is warranted to understand such complexity. Bathynellidae occur in most Australian aquifers, but only one species has been described so far, and the group lacks a reliable taxonomic framework. A new genus and one new species from the Pilbara region of Western Australia, Pilbaranella ethelensis, gen. et sp. nov., is described using both morphological and molecular data. Three additional species of Pilbaranella are defined through mitochondrial and nuclear genes, using Automatic Barcode Gap Discovery and Poisson Tree Processes species delimitation methods. A comparison of morphology and 18S rRNA sequences between Pilbaranella, gen. nov. and known lineages provides the evidentiary basis for the decision to establish a new genus. This study provides a morphological and molecular framework to work with Bathynellidae, especially in Australia where a highly diverse fauna remains still undescribed.


Invertebrate Systematics | 2016

Pseudoscorpions of the family Feaellidae (Pseudoscorpiones:Feaelloidea) from the Pilbara region of Western Australia show extreme short-range endemism

Mark S. Harvey; Kym M. Abrams; Amber S. Beavis; Mia J. Hillyer; Joel A. Huey

Abstract. The phylogenetic relationships of the Australian species of Feaellidae are assessed with a molecular analysis using mitochondrial (CO1) and nuclear (ITS2) data. These results confirm the morphological analysis that three previously undescribed species occur in the Pilbara bioregion, which are named and described: Feaella (Tetrafeaella) callani, sp. nov., F. (T.) linetteae, sp. nov. and F. (T.) tealei, sp. nov. The males of these three species, as well as males of F. anderseni Harvey and other unnamed species from the Kimberley region of north-western Australia, have a pair of enlarged, thick-walled bursa that are not found in other feaellids. Despite numerous environmental impact surveys for short-range endemic invertebrates in the Pilbara, very few specimens have been collected, presumably due to their relictual distributions, restricted habitat preferences and low densities. http://zoobank.org/urn:lsid:zoobank.org:pub:131F0587-F2EE-405F-BE5A-772F072D9915


Invertebrate Systematics | 2015

A novel symbiotic relationship between sociable weaver birds (Philetairus socius) and a new cheliferid pseudoscorpion (Pseudoscorpiones : Cheliferidae) in southern Africa

Mark S. Harvey; Patricia C. Lopes; Gregory R. Goldsmith; Ali Halajian; Mia J. Hillyer; Joel A. Huey

Abstract. Birds harbour a wide array of other taxa in their nests or in their plumage, which either have an ectoparasitic or commensal relationship with the host. We report on the discovery of a cheliferid pseudoscorpion found in the plumage and nests of the sociable weaver bird (Philetairus socius) in southern Africa. The nests of these communal birds are the largest of any bird, and may contain up to 500 individuals. The pseudoscorpion is likely to have a mutualistic relationship with the birds, most likely preying on other small invertebrates in the nests. Molecular data derived from two populations of the pseudoscorpion found divergence levels of 1.1% in cytochrome oxidase 1 (CO1), and an analysis of CO1 and two rRNA genes (18S and 28S) found a close relationship with Chelifer and Parachelifer in the tribe Cheliferini, which is supported by the morphology of the male genitalia. The molecular analysis also suggests that Beierius may not belong to the Cheliferini. The pseudoscorpion found in association with the sociable weaver represents a new genus and species, Sociochelifer metoecus Harvey, sp. nov.


ZooKeys | 2018

Conservation systematics of the shield-backed trapdoor spiders of the nigrum-group (Mygalomorphae, idiopidae, idiosoma): Integrative taxonomy reveals a diverse and threatened fauna from south-western australia

Michael G. Rix; Joel A. Huey; Steven J.B. Cooper; Andrew D. Austin; Mark S. Harvey

Abstract The aganippine shield-backed trapdoor spiders of the monophyletic nigrum-group of Idiosoma Ausserer s. l. are revised, and 15 new species are described from Western Australia and the Eyre Peninsula of South Australia: I. arenaceum Rix & Harvey, sp. n., I. corrugatum Rix & Harvey, sp. n., I. clypeatum Rix & Harvey, sp. n., I. dandaragan Rix & Harvey, sp. n., I. formosum Rix & Harvey, sp. n., I. gardneri Rix & Harvey, sp. n., I. gutharuka Rix & Harvey, sp. n., I. incomptum Rix & Harvey, sp. n., I. intermedium Rix & Harvey, sp. n., I. jarrah Rix & Harvey, sp. n., I. kopejtkaorum Rix & Harvey, sp. n., I. kwongan Rix & Harvey, sp. n., I. mcclementsorum Rix & Harvey, sp. n., I. mcnamarai Rix & Harvey, sp. n., and I. schoknechtorum Rix & Harvey, sp. n. Two previously described species from south-western Western Australia, I. nigrum Main, 1952 and I. sigillatum (O. P.-Cambridge, 1870), are re-illustrated and re-diagnosed, and complementary molecular data for 14 species and seven genes are analysed with Bayesian methods. Members of the nigrum-group are of long-standing conservation significance, and I. nigrum is the only spider in Australia to be afforded threatened species status under both State and Commonwealth legislation. Two other species, I. formosum Rix & Harvey, sp. n. and I. kopejtkaorum Rix & Harvey, sp. n., are also formally listed as Endangered under Western Australian State legislation. Here we significantly relimit I. nigrum to include only those populations from the central and central-western Wheatbelt bioregion, and further document the known diversity and conservation status of all known species.


PeerJ | 2018

Conspicuously concealed: revision of the arid clade of the Gehyra variegata (Gekkonidae) group in Western Australia using an integrative molecular and morphological approach, with the description of five cryptic species

Luke Kealley; Paul Doughty; Mitzy Pepper; J. Scott Keogh; Mia J. Hillyer; Joel A. Huey

The methods used to detect and describe morphologically cryptic species have advanced in recent years, owing to the integrative nature of molecular and morphological techniques required to elucidate them. Here we integrate recent phylogenomic work that sequenced many genes but few individuals, with new data from mtDNA and morphology from hundreds of gecko specimens of the Gehyra variegata group from the Australian arid zone. To better understand morphological and geographical boundaries among cryptic forms, we generated new sequences from 656 Gehyra individuals, largely assigned to G. variegata group members over a wide area in Western Australia, with especially dense sampling in the Pilbara region, and combined them with 566 Gehyra sequences from GenBank, resulting in a dataset of 1,222 specimens. Results indicated the existence of several cryptic species, from new species with diagnostic morphological characters, to cases when there were no useful characters to discriminate among genetically distinctive species. In addition, the cryptic species often showed counter-intuitive distributions, including broad sympatry among some forms and short range endemism in other cases. Two new species were on long branches in the phylogram and restricted to the northern Pilbara region: most records of the moderately sized G. incognita sp. nov. are near the coast with isolated inland records, whereas the small-bodied saxicoline G. unguiculata sp. nov. is only known from a small area in the extreme north of the Pilbara. Three new species were on shorter branches in the phylogram and allied to G. montium. The moderately sized G. crypta sp. nov. occurs in the western and southern Pilbara and extends south through the Murchison region; this species was distinctive genetically, but with wide overlap of characters with its sister species, G. montium. Accordingly, we provide a table of diagnostic nucleotides for this species as well as for all other species treated here. Two small-bodied species occur in isolated coastal regions: G. capensis sp. nov. is restricted to the North West Cape and G. ocellata sp. nov. occurs on Barrow Island and other neighbouring islands. The latter species showed evidence of introgression with the mtDNA of G. crypta sp. nov., possibly due to recent connectivity with the mainland owing to fluctuating sea levels. However, G. ocellata sp. nov. was more closely related to G. capensis sp. nov. in the phylogenomic data and in morphology. Our study illustrates the benefits of combining phylogenomic data with extensive screens of mtDNA to identify large numbers of individuals to the correct cryptic species. This approach was able to provide sufficient samples with which to assess morphological variation. Furthermore, determination of geographic distributions of the new cryptic species should greatly assist with identification in the field, demonstrating the utility of sampling large numbers of specimens across wide areas.


Australian Journal of Entomology | 2018

Population demography and biology of a new species of giant spiny trapdoor spider (Araneae: Idiopidae: Euoplos) from inland Queensland: developing a ‘slow science’ study system to address a conservation crisis: Demography and biology of Euoplos trapdoor spiders

Michael G. Rix; Jeremy D. Wilson; Alan G Rix; Aleena M Wojcieszek; Joel A. Huey; Mark S. Harvey

‘Slow science’ approaches to understanding the ecology, natural history and demography of species have declined over recent decades, despite the critical importance of these studies to conservation biology. With the progression of the Anthropocene, populations of invertebrates are under increasing pressure across the globe, yet few long‐term datasets exist to track potential changes or declines. Here, we present a newly developed ‘slow science’ study system, to understand the demography, biology and molecular ecology of a potentially threatened species of giant idiopid trapdoor spider from inland eastern Australia. This previously undescribed species in the tribe Euoplini, here newly described as Euoplos grandis Wilson & Rix sp. nov., has a highly fragmented distribution in the southern Brigalow Belt bioregion of south‐eastern Queensland, in a landscape largely cleared for cropped agriculture. The conservation significance of Idiopidae has long been recognised, and these spiders remain a flagship group for terrestrial invertebrate conservation in Australia. By studying growth rates, life spans, recruitment, natural history, fitness, gene flow, dispersal and other aspects of population and individual health, we aim gradually to uncover the population dynamics of a discrete natural population. In this paper, we summarise longitudinal data for 69 individual trapdoor spiders following an initial 18 months of study, and highlight preliminary demographic trends, biological observations and avenues for future genetic research. Ultimately, the aim of this study is to provide a baseline dataset for the conservation of Australian Idiopidae, and a guiding case study for similar taxa elsewhere in Australia.


ARPHA Conference Abstracts | 2018

Research and stakeholders: Bathynellidae (Bathynellacea, Crustacea) case studies in mining areas. New genera from Australia and the enigma of the “cosmopolitan” Bathynella genus

Giulia Perina; Ana Camacho; Joel A. Huey; Annette Koenders; Pierre Horwitz

It seems obvious to say that research can provide benefits to multiple stakeholders and that stakeholder involvement is more often than not essential for research to proceed. Concrete examples of these mutual dependencies are valuable, where industry, government agencies and biological studies increase each others’ potential and efficiencies. In the past 20 years the number of subterranean taxa discovered in Australia, especially in the Pilbara bioregion, has increased consistently thanks to environmental and biological surveys, often associated with mining development, but the investment on research needed to understand this vast biodiversity is far from what is required. The family Bathynellidae (Crustacea) occur in most Australian aquifers, but collecting them is not simple and their study and identification are very difficult due to their small and fragile bodies and their conservative morphology. Additionally, the poor and incomplete ‡,§ | § ‡ ‡

Collaboration


Dive into the Joel A. Huey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara York Main

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Camacho

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge