Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel A. Mathews is active.

Publication


Featured researches published by Joel A. Mathews.


Frontiers in Immunology | 2014

Induction of IL-17A Precedes Development of Airway Hyperresponsiveness during Diet-Induced Obesity and Correlates with Complement Factor D

Joel A. Mathews; Allison P. Wurmbrand; Luiza Ribeiro; Felippe Neto; Stephanie A. Shore

Obesity is a risk factor for the development of asthma. Obese mice exhibit innate airway hyperresponsiveness (AHR), a characteristic feature of asthma, and IL-17A is required for development of AHR in obese mice. The purpose of this study was to examine the temporal association between the onset of AHR and changes in IL-17A during the development of obesity by high-fat feeding in mice. At weaning, C57BL/6J mice were placed either on mouse chow or on a high-fat diet (HFD) and examined 9, 12, 15, 18, or 24 weeks later. Airway responsiveness to aerosolized methacholine (assessed via the forced oscillation technique) was greater in mice fed HFD versus chow for 24 weeks but not at earlier time points. Bronchoalveolar lavage and serum IL-17A were not affected by either the type or duration of diet, but increased pulmonary IL17a mRNA abundance was observed in HFD versus chow fed mice after both 18 and 24 weeks. Flow cytometry also confirmed an increase in IL-17A+ γδ T cells and IL-17A+ CD4+ T (Th17) cells in lungs of HFD versus chow fed mice. Pulmonary expression of Cfd (complement factor D, adipsin), a gene whose expression can be reduced by IL-17A, decreased after both 18 and 24 weeks in HFD versus chow fed mice. Furthermore, pulmonary Cfd mRNA abundance correlated with elevations in pulmonary Il17a mRNA expression and with AHR. Serum levels of TNFα, MIP-1α, and MIP-1β, and classical markers of systemic inflammation of obesity were significantly greater in HFD than chow fed mice after 24 weeks, but not earlier. In conclusion, our data indicate that pulmonary rather than systemic IL-17A is important for obesity-related AHR and suggest that changes in pulmonary Cfd expression contribute to these effects of IL-17A. Further, the observation that increases in Il17a preceded the development of AHR by several weeks suggests that IL-17A interacts with other factors to promote AHR. The observation that the onset of the systemic inflammation of obesity coincided temporally with the development of AHR suggest that systemic inflammation may be one of these factors.


Environmental Health Perspectives | 2016

IL-33 Drives Augmented Responses to Ozone in Obese Mice.

Joel A. Mathews; Nandini Krishnamoorthy; David I. Kasahara; Youngji Cho; Allison P. Wurmbrand; Luiza Ribeiro; Dirk E. Smith; Dale T. Umetsu; Bruce D. Levy; Stephanie A. Shore

Background: Ozone increases IL-33 in the lungs, and obesity augments the pulmonary effects of acute ozone exposure. Objectives: We assessed the role of IL-33 in the augmented effects of ozone observed in obese mice. Methods: Lean wildtype and obese db/db mice were pretreated with antibodies blocking the IL-33 receptor, ST2, and then exposed to ozone (2 ppm for 3 hr). Airway responsiveness was assessed, bronchoalveolar lavage (BAL) was performed, and lung cells harvested for flow cytometry 24 hr later. Effects of ozone were also assessed in obese and lean mice deficient in γδ T cells and their wildtype controls. Results and Discussion: Ozone caused greater increases in BAL IL-33, neutrophils, and airway responsiveness in obese than lean mice. Anti-ST2 reduced ozone-induced airway hyperresponsiveness and inflammation in obese mice but had no effect in lean mice. Obesity also augmented ozone-induced increases in BAL CXCL1 and IL-6, and in BAL type 2 cytokines, whereas anti-ST2 treatment reduced these cytokines. In obese mice, ozone increased lung IL-13+ innate lymphoid cells type 2 (ILC2) and IL-13+ γδ T cells. Ozone increased ST2+ γδ T cells, indicating that these cells can be targets of IL-33, and γδ T cell deficiency reduced obesity-related increases in the response to ozone, including increases in type 2 cytokines. Conclusions: Our data indicate that IL-33 contributes to augmented responses to ozone in obese mice. Obesity and ozone also interacted to promote type 2 cytokine production in γδ T cells and ILC2 in the lungs, which may contribute to the observed effects of IL-33. Citation: Mathews JA, Krishnamoorthy N, Kasahara DI, Cho Y, Wurmbrand AP, Ribeiro L, Smith D, Umetsu D, Levy BD, Shore SA. 2017. IL-33 drives augmented responses to ozone in obese mice. Environ Health Perspect 125:246–253; http://dx.doi.org/10.1289/EHP272


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Innate and ozone-induced airway hyperresponsiveness in obese mice: role of TNF-α

Alison S. Williams; Joel A. Mathews; David I. Kasahara; Allison P. Wurmbrand; Lucas Chen; Stephanie A. Shore

Innate airway hyperresponsiveness (AHR) and augmented responses to ozone, an asthma trigger, are characteristics of obese mice. Systemic inflammation, a condition of increased circulating concentrations of inflammatory moieties, occurs in obesity. We hypothesized that TNF-α, via its effects as a master effector of this systemic inflammation, regulates innate AHR and augmented responses to ozone in obese mice. Therefore, we examined pulmonary inflammation and airway responsiveness in unexposed or ozone-exposed (2 ppm for 3 h) lean wild-type and obese Cpe(fat) mice that were TNF-α sufficient or deficient. Cpe(fat) mice lack carboxypeptidase E, which regulates satiety. Compared with wild type, Cpe(fat) mice had elevated serum IL-17A, G-CSF, KC, MCP-1, IL-9, MIG, and leptin, indicating systemic inflammation. Despite reductions in most of these moieties in TNF-α-deficient vs. -sufficient Cpe(fat) mice, we observed no substantial difference in airway responsiveness in these two groups of mice. Ozone-induced increases in bronchoalveolar lavage (BAL) neutrophils and macrophages were lower, but ozone-induced AHR and increases in BAL hyaluronan, osteopontin, IL-13, and protein carbonyls, a marker of oxidative stress, were augmented in TNF-α-deficient vs. -sufficient Cpe(fat) mice. Our data indicate that TNF-α has an important role in promoting the systemic inflammation but not the innate AHR of obesity, suggesting that the systemic inflammation of obesity is not the major driver of this AHR. TNF-α is required for the augmented effects of acute ozone exposure on pulmonary inflammatory cell recruitment in obese mice, whereas TNF-α protects against ozone-induced AHR in obese mice, possibly by suppressing ozone-induced oxidative stress.


PLOS ONE | 2014

γδ T cells are required for pulmonary IL-17A expression after ozone exposure in mice: role of TNFα.

Joel A. Mathews; Alison S. Williams; Jeffrey D. Brand; Allison P. Wurmbrand; Lucas Chen; Fernanda M. C. Ninin; Huiqing Si; David I. Kasahara; Stephanie A. Shore

Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24–72 h). We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ−/−) to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ−/− mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ−/− mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ−/− versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Pivotal role of IL-6 in the hyperinflammatory responses to subacute ozone in adiponectin-deficient mice

David I. Kasahara; Hye Young Kim; Joel A. Mathews; Norah G. Verbout; Alison S. Williams; Allison P. Wurmbrand; Fernanda M. C. Ninin; Felippe Neto; Leandro A.P. Benedito; Christopher Hug; Dale T. Umetsu; Stephanie A. Shore

Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24-72 h), neutrophilic inflammation and IL-6 are augmented in adiponectin-deficient (Adipo(-/-)) mice. The IL-17/granulocyte colony-stimulating factor (G-CSF) axis is required for this increased neutrophilia. We hypothesized that elevated IL-6 in Adipo(-/-) mice contributes to their augmented responses to ozone via effects on IL-17A expression. Therefore, we generated mice deficient in both adiponectin and IL-6 (Adipo(-/-)/IL-6(-/-)) and exposed them to ozone or air. In ozone-exposed mice, bronchoalveolar lavage (BAL) neutrophils, IL-6, and G-CSF, and pulmonary Il17a mRNA expression were greater in Adipo(-/-) vs. wild-type mice, but reduced in Adipo(-/-)/IL-6(-/-) vs. Adipo(-/-) mice. IL-17A(+) F4/80(+) cells and IL-17A(+) γδ T cells were also reduced in Adipo(-/-)/IL-6(-/-) vs. Adipo(-/-) mice exposed to ozone. Only BAL neutrophils were reduced in IL-6(-/-) vs. wild-type mice. In wild-type mice, IL-6 was expressed in Gr-1(+)F4/80(-)CD11c(-) cells, whereas in Adipo(-/-) mice F4/80(+)CD11c(+) cells also expressed IL-6, suggesting that IL-6 is regulated by adiponectin in these alveolar macrophages. Transcriptomic analysis identified serum amyloid A3 (Saa3), which promotes IL-17A expression, as the gene most differentially augmented by ozone in Adipo(-/-) vs. wild-type mice. After ozone, Saa3 mRNA expression was markedly greater in Adipo(-/-) vs. wild-type mice but reduced in Adipo(-/-)/IL-6(-/-) vs. Adipo(-/-) mice. In conclusion, our data support a pivotal role of IL-6 in the hyperinflammatory condition observed in Adipo(-/-) mice after ozone exposure and suggest that this role of IL-6 involves its ability to induce Saa3, IL-17A, and G-CSF.


Environmental Health Perspectives | 2013

Augmented Pulmonary Responses to Acute Ozone Exposure in Obese Mice: Roles of TNFR2 and IL-13

Alison S. Williams; Joel A. Mathews; David I. Kasahara; Lucas Chen; Allison P. Wurmbrand; Huiqing Si; Stephanie A. Shore

Background: Acute ozone (O3) exposure results in greater inflammation and airway hyperresponsiveness (AHR) in obese versus lean mice. Objectives: We examined the hypothesis that these augmented responses to O3 are the result of greater signaling through tumor necrosis factor receptor 2 (TNFR2) and/or interleukin (IL)-13. Methods: We exposed lean wild-type (WT) and TNFR2-deficient (TNFR2–/–) mice, and obese Cpefat and TNFR2-deficient Cpefat mice (Cpefat/TNFR2–/–), to O3 (2 ppm for 3 hr) either with or without treatment with anti–IL-13 or left them unexposed. Results: O3-induced increases in baseline pulmonary mechanics, airway responsiveness, and cellular inflammation were greater in Cpefat than in WT mice. In lean mice, TNFR2 deficiency ablated O3-induced AHR without affecting pulmonary inflammation; whereas in obese mice, TNFR2 deficiency augmented O3-induced AHR but reduced inflammatory cell recruitment. O3 increased pulmonary expression of IL-13 in Cpefat but not WT mice. Flow cytometry analysis of lung cells indicated greater IL-13–expressing CD4+ cells in Cpefat versus WT mice after O3 exposure. In Cpefat mice, anti–IL-13 treatment attenuated O3-induced increases in pulmonary mechanics and inflammatory cell recruitment, but did not affect AHR. These effects of anti–IL-13 treatment were not observed in Cpefat/TNFR2–/– mice. There was no effect of anti–IL-13 treatment in WT mice. Conclusions: Pulmonary responses to O3 are not just greater, but qualitatively different, in obese versus lean mice. In particular, in obese mice, O3 induces IL-13 and IL-13 synergizes with TNF via TNFR2 to exacerbate O3-induced changes in pulmonary mechanics and inflammatory cell recruitment but not AHR.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice

David I. Kasahara; Joel A. Mathews; Chan Y. Park; Youngji Cho; Gabrielle Hunt; Allison P. Wurmbrand; James K. Liao; Stephanie A. Shore

Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1(+/-), and ROCK2(+/-) mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ROCK2 haploinsufficiency did not affect airway responsiveness in air-exposed mice but significantly reduced ozone-induced AHR, with a greater reduction in ROCK2(+/-) mice despite increased bronchoalveolar lavage (BAL) inflammatory cells in ROCK2(+/-) mice. Compared with wild-type mice, ozone-induced increases in BAL hyaluronan, a matrix protein implicated in ozone-induced AHR, were lower in ROCK1(+/-) but not ROCK2(+/-) mice. Ozone-induced increases in other inflammatory moieties reported to contribute to ozone-induced AHR (IL-17A, osteopontin, TNFα) were not different in wild-type vs. ROCK1(+/-) or ROCK2(+/-) mice. We also observed a dose-dependent reduction in ozone-induced AHR after treatment with the ROCK1/ROCK2 inhibitor fasudil, even though fasudil was administered after induction of inflammation. Ozone increased pulmonary expression of ROCK2 but not ROCK1 or RhoA. A ROCK2 inhibitor, SR3677, reduced contractile forces in primary human airway smooth muscle cells, confirming a role for ROCK2 in airway smooth muscle contraction. Our results demonstrate that ozone-induced AHR requires ROCK. Whereas ROCK1-dependent changes in hyaluronan may contribute to ROCK1s role in O3-induced AHR, the role of ROCK2 is downstream of inflammation, likely at the level of airway smooth muscle contraction.


PLOS ONE | 2015

γδ T Cells Are Required for M2 Macrophage Polarization and Resolution of Ozone-Induced Pulmonary Inflammation in Mice.

Joel A. Mathews; David I. Kasahara; Luiza Ribeiro; Allison P. Wurmbrand; Fernanda M. C. Ninin; Stephanie A. Shore

We examined the role of γδ T cells in the induction of alternatively activated M2 macrophages and the resolution of inflammation after ozone exposure. Wildtype (WT) mice and mice deficient in γδ T cells (TCRδ-/- mice) were exposed to air or to ozone (0.3 ppm for up to 72h) and euthanized immediately or 1, 3, or 5 days after cessation of exposure. In WT mice, M2 macrophages accumulated in the lungs over the course of ozone exposure. Pulmonary mRNA abundance of the M2 genes, Arg1, Retnla, and Clec10a, also increased after ozone. In contrast, no evidence of M2 polarization was observed in TCRδ-/- mice. WT but not TCRδ-/- mice expressed the M2c polarizing cytokine, IL-17A, after ozone exposure and WT mice treated with an IL-17A neutralizing antibody exhibited attenuated ozone-induced M2 gene expression. In WT mice, ozone-induced increases in bronchoalveolar lavage neutrophils and macrophages resolved quickly after cessation of ozone exposure returning to air exposed levels within 3 days. However, lack of M2 macrophages in TCRδ-/- mice was associated with delayed clearance of inflammatory cells after cessation of ozone and increased accumulation of apoptotic macrophages in the lungs. Delayed restoration of normal lung architecture was also observed in TCRδ-/- mice. In summary, our data indicate that γδ T cells are required for the resolution of ozone-induced inflammation, likely because γδ T cells, through their secretion of IL-17A, contribute to changes in macrophage polarization that promote clearance of apoptotic cells.


American Journal of Respiratory Cell and Molecular Biology | 2018

The Microbiome Regulates Pulmonary Responses to Ozone in Mice

Youngji Cho; Hiroki Tashiro; David I. Kasahara; Traci A. Brown; Jeffrey D. Brand; Joel A. Mathews; Curtis Huttenhower; Stephanie A. Shore

Abstract Previous reports demonstrate that the microbiome impacts allergic airway responses, including airway hyperresponsiveness, a characteristic feature of asthma. Here we examined the role of the microbiome in pulmonary responses to a nonallergic asthma trigger, ozone. We depleted the microbiota of conventional mice with either a single antibiotic (ampicillin, metronidazole, neomycin, or vancomycin) or a cocktail of all four antibiotics given via the drinking water. Mice were then exposed to room air or ozone. In air‐exposed mice, airway responsiveness did not differ between antibiotic‐ and control water‐treated mice. Ozone caused airway hyperresponsiveness, the magnitude of which was decreased in antibiotic cocktail‐treated mice versus water‐treated mice. Except for neomycin, single antibiotics had effects similar to those observed with the cocktail. Compared with conventional mice, germ‐free mice also had attenuated airway responsiveness after ozone. 16S ribosomal RNA gene sequencing of fecal DNA to characterize the gut microbiome indicated that bacterial genera that were decreased in mice with reduced ozone‐induced airway hyperresponsiveness after antibiotic treatment were short‐chain fatty acid producers. Serum analysis indicated reduced concentrations of the short‐chain fatty acid propionate in cocktail‐treated mice but not in neomycin‐treated mice. Dietary enrichment with pectin, which increased serum short‐chain fatty acids, also augmented ozone‐induced airway hyperresponsiveness. Furthermore, propionate supplementation of the drinking water augmented ozone‐induced airway hyperresponsiveness in conventional mice. Our data indicate that the microbiome contributes to ozone‐induced airway hyperresponsiveness, likely via its ability to produce short‐chain fatty acids.


American Journal of Respiratory Cell and Molecular Biology | 2017

Augmented Responses to Ozone in Obese Mice Require IL-17A and Gastrin-Releasing Peptide

Joel A. Mathews; Nandini Krishnamoorthy; David I. Kasahara; John W. Hutchinson; Youngji Cho; Jeffrey D. Brand; Alison S. Williams; Allison P. Wurmbrand; Luiza Ribeiro; Frank Cuttitta; Mary E. Sunday; Bruce D. Levy; Stephanie A. Shore

Abstract Ozone and obesity both increase IL‐17A in the lungs. In mice, obesity augments the airway hyperresponsiveness and neutrophil recruitment induced by acute ozone exposure. Therefore, we examined the role of IL‐17A in obesity‐related increases in the response to ozone observed in obese mice. Lean wild‐type and obese db/db mice were pretreated with IL‐17A‐blocking or isotype antibodies, exposed to air or ozone (2 ppm for 3 h), and evaluated 24 hours later. Microarray analysis of lung tissue gene expression was used to examine the mechanistic basis for effects of anti‐IL‐17A. Compared with lean mice, ozone‐exposed obese mice had greater concentrations of BAL IL‐17A and greater numbers of pulmonary IL‐17A+ cells. Ozone‐induced increases in BAL IL‐23 and CCL20, cytokines important for IL‐17A+ cell recruitment and activation, were also greater in obese mice. Anti‐IL‐17A treatment reduced ozone‐induced airway hyperresponsiveness toward levels observed in lean mice. Anti‐IL‐17A treatment also reduced BAL neutrophils in both lean and obese mice, possibly because of reductions in CXCL1. Microarray analysis identified gastrin‐releasing peptide (GRP) receptor (Grpr) among those genes that were both elevated in the lungs of obese mice after ozone exposure and reduced after anti‐IL‐17A treatment. Furthermore, ozone exposure increased BAL GRP to a greater extent in obese than in lean mice, and GRP‐neutralizing antibody treatment reduced obesity‐related increases in ozone‐induced airway hyperresponsiveness and neutrophil recruitment. Our data indicate that IL‐17A contributes to augmented responses to ozone in db/db mice. Furthermore, IL‐17A appears to act at least in part by inducing expression of Grpr.

Collaboration


Dive into the Joel A. Mathews's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale T. Umetsu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge