Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel C. Rowland is active.

Publication


Featured researches published by Joel C. Rowland.


Hydrogeology Journal | 2012

Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets

Susan S. Hubbard; Chandana Gangodagamage; Baptiste Dafflon; Haruko M. Wainwright; John E. Peterson; A. Gusmeroli; Craig Ulrich; Yu-Shu Wu; Cathy J. Wilson; Joel C. Rowland; Craig E. Tweedie; Stan D. Wullschleger

The value of remote sensing and surface geophysical data for characterizing the spatial variability and relationships between land-surface and subsurface properties was explored in an Alaska (USA) coastal plain ecosystem. At this site, a nested suite of measurements was collected within a region where the land surface was dominated by polygons, including: LiDAR data; ground-penetrating radar, electromagnetic, and electrical-resistance tomography data; active-layer depth, soil temperature, soil-moisture content, soil texture, soil carbon and nitrogen content; and pore-fluid cations. LiDAR data were used to extract geomorphic metrics, which potentially indicate drainage potential. Geophysical data were used to characterize active-layer depth, soil-moisture content, and permafrost variability. Cluster analysis of the LiDAR and geophysical attributes revealed the presence of three spatial zones, which had unique distributions of geomorphic, hydrological, thermal, and geochemical properties. The correspondence between the LiDAR-based geomorphic zonation and the geophysics-based active-layer and permafrost zonation highlights the significant linkage between these ecosystem compartments. This study suggests the potential of combining LiDAR and surface geophysical measurements for providing high-resolution information about land-surface and subsurface properties as well as their spatial variations and linkages, all of which are important for quantifying terrestrial-ecosystem evolution and feedbacks to climate.ResuméLa portée de la télédétection et des données géophysique de surface pour caractériser la variabilité spatiale et les relations entre la surface du terrain et les propriétés de la subsurface a été étudiée sous tous ses aspects dans l’écosystème de la plaine côtière d’Alaska (USA). Dans cette région, sur un site où la surface du sol est dominée par des polygones, une série de données se recoupant a été collectée, incluant : données LiDAR; géoradar, tomographie électromagnétique et résistivité; profondeur de la couche aquifère, température, teneur en humidité, texture, teneur en carbone et en azote du sol; et cations du fluide des pores. Les données Lidar ont été utilisées pour établir les cotes géomorphiques, qui peuvent indiquer un drainage potentiel. Des données géophysiques ont été utilisées pour déterminer la profondeur de la couche aquifère, la teneur en humidité du sol, et la variabilité du pergélisol. L’analyse par agglomérat des données LiDAR et des attributs géophysiques ont révélé la présence de trois zones spatiales ayant une distribution similaire des propriétés géomorphiques, hydrogéologiques, thermales et géochimiques. La correspondance entre la zonation géomorphique basée sur LiDAR, la couche aquifère selon la géophysique et la zonation permafrost, met en lumière la relation significative entre ces compartiments de l’écosystème. Cette étude montre le potentiel d’une combinaison des mesures LiDAR et des mesures géophysiques de surface pour fournir une information haute résolution sur les propriétés de surface et de subsurface du sol aussi bien que sur leur variations spatiales et liens, toutes étant importantes pour quantifier l’évolution de l’écosystème terrestre et les réponses au climat.ResumenSe exploró el valor de los sensores remotos y de los datos geofísicos de superficie para caracterizar la variabilidad espacial y las relaciones entre la superficie y las propiedades subsuperficiales en un ecosistema de planicie costera en Alaska (EEUU). En este sitio, un conjunto anidado de medidas fue colectado dentro de una región donde la superficie estaba dominada por polígonos, incluyendo: datos LiDAR; datos de radar, electromagnéticos, y tomografías de resistividad eléctrica; profundidad de la capa activa, temperatura del suelo, contenido de humedad del suelo, textura del suelo, contenido de carbono y nitrógeno en suelo; y cationes del fluido de poros. Los datos LiDAR fueron usados para extraer los indicadores geomórficos, que posiblemente indican un drenaje potencial. Los datos geofísicos fueron para caracterizar la profundidad de la capa activa, el contenido de humedad del suelo y la variabilidad del permafrost. En análisis de cluster de los LiDAR y los atributos geofísicos revelaron la presencia espacial de tres zonas, que tenían una única distribución de propiedades geomórficas, hidrológicas, térmicas y geoquímicas. La correspondencia entre la zonación geomórfica basada en LiDAR y la capa activa basada en geofísica y la zonación del permafrost destaca la vinculación significativa entre estos compartimentos del ecosistema. Este estudio sugiere el potencial de la combinación LiDAR y las mediciones geofísicas de superficie para proveer información de alta resolución acerca de las propiedades de la superficie y de la subsuperficie así como su variación espacial y su articulación, todos los cuales son importantes para cuantificar la evolución del ecosistema terrestre y las reacciones con el clima.摘要用来描述地表和地下性质的空间变异性和两者之间的关系的遥感和地面地球物理数据已在阿拉斯加(美国)的一个沿海平原生态系统进行了探讨。在本次研究场地的一个表面呈多边形的区域收集到了一套测量数据,包括激光雷达数据;探地雷达数据,电磁和电阻断层扫描数据;活性层深度,土壤温度,土壤水气含量,土壤质地,土壤碳和氮的含量;以及孔隙流体阳离子数据。激光雷达数据用来提取地貌指标,这可能指示出潜在的排泄。地球物理数据用来刻画活性层的深度,土壤水气含量和永久冻土的变化特征。通过对激光雷达和地球物理数据属性的聚类分析发现了三个在地形,水文,热和地球化学性质分布上存在异常的空间区域。基于激光雷达测量的地貌分区与基于地球物理数据的活性层和永久冻土分区之间的对应关系突出了这些生态系统分区间的紧密联系。本次研究表明可以通过结合激光雷达和地表地球物理测量来为地表和地下的性质以及它们在空间上的变化和关系提供高分辨率的信息,所有这些对于量化陆地生态系统的演化和对气候变化的反应都是非常重要的。ResumoNum ecossistema da planície costeira do Alaska (EUA) foi explorado o valor da deteção remota e de dados de geofísica de superfície para caracterizar a variabilidade espacial e as relações entre propriedades da superfície do terreno e da subsuperfície. Neste local, inserido numa região onde o terreno superficial é dominado por polígonos, foi recolhido um conjunto agregado de medições, incluindo: dados de LiDAR; dados de geoadar, eletromagnéticos e de tomografia de resistência elétrica; profundidade da camada ativa, temperatura do solo, teor de água no solo, textura do solo, teor de carbono e azoto no solo; e catiões no fluido poroso. Os dados LiDAR foram usados para extrair dimensões geomórficas que potencialmente indicam o potencial de drenagem. Os dados geofísicos foram usados para caracterizar a profundidade da camada ativa, o teor de humidade no solo e a variabilidade no permafrost. A análise grupal de atributos LiDAR e geofísicos revelou a presença de três zonas espaciais que tinham distribuições únicas de propriedades geomórficas, hidrológicas, térmicas e geoquímicas. A correspondência entre o zonamento geomórfico baseado no LiDAR e a zonação da camada activa baseada na geofísica e do permafrost, demonstra a significativa conexão entre estes compartimentos do ecossistema. Este estudo sugere o potencial da combinação de medições de LiDAR e de geofísica de superfície para fornecer informação de alta resolução acerca das propriedades da superfície do terreno e da subsuperfície, assim como sobre as variações espaciais e conexões, sendo todas elas importantes para a quantificação da evolução do ecossistema terrestre e as retroações com o clima.


Journal of Fluid Mechanics | 2009

Turbulent characteristics of a shallow wall-bounded plane jet: experimental implications for river mouth hydrodynamics

Joel C. Rowland; Mark T. Stacey; William E. Dietrich

Jets arising from rivers, streams and tidal flows entering still waters differ from most experimental studies of jets both in aspect ratio and in the presence of a solid bottom boundary and an upper free surface. Despite these differences, the applicability of experimental jet studies to these systems remains largely untested by either field or realistically scaled experimental studies. Here we present experimental results for a wall-bounded plane jet scaled to jets created by flow discharging into floodplain lakes. A characteristic feature of both our prototype and experimental jets is the presence of large-scale meandering turbulent structures that span the width of the jets. In our experimental jets, we observe self-similarity in the distribution of mean streamwise velocities by a distance of six channel widths downstream of the jet outlet. After a distance of nine channel widths the velocity decay and the spreading rates largely agree with prior experimental results for plane jets. The magnitudes and distributions of the cross-stream velocity and lateral shear stresses approach self-preserving conditions in the upper half of the flow, but decrease in magnitude, and deviate from self-preserving distributions with proximity to the bed. The presence of the meandering structure has little influence on the mean structure of the jet, but dominates the jet turbulence. A comparison of turbulence analysed at time scales both greater than and less than the period of the meandering structure indicates that these structures increase turbulence intensities by 3–5 times, and produce lateral shear stresses and momentum diffusivities that are one and two orders of magnitude greater, respectively, than turbulence generated by bed friction alone.


Water Resources Research | 2014

Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets.

Chandana Gangodagamage; Joel C. Rowland; Susan S. Hubbard; Steven P. Brumby; Anna Liljedahl; Haruko M. Wainwright; Cathy J. Wilson; Garrett L. Altmann; Baptiste Dafflon; John E. Peterson; Craig Ulrich; Craig E. Tweedie; Stan D. Wullschleger

Landscape attributes that vary with microtopography, such as active layer thickness (ALT), are labor intensive and difficult to document effectively through in situ methods at kilometer spatial extents, thus rendering remotely sensed methods desirable. Spatially explicit estimates of ALT can provide critically needed data for parameterization, initialization, and evaluation of Arctic terrestrial models. In this work, we demonstrate a new approach using high-resolution remotely sensed data for estimating centimeter-scale ALT in a 5 km2 area of ice-wedge polygon terrain in Barrow, Alaska. We use a simple regression-based, machine learning data-fusion algorithm that uses topographic and spectral metrics derived from multisensor data (LiDAR and WorldView-2) to estimate ALT (2 m spatial resolution) across the study area. Comparison of the ALT estimates with ground-based measurements, indicates the accuracy (r2 = 0.76, RMSE ±4.4 cm) of the approach. While it is generally accepted that broad climatic variability associated with increasing air temperature will govern the regional averages of ALT, consistent with prior studies, our findings using high-resolution LiDAR and WorldView-2 data, show that smaller-scale variability in ALT is controlled by local eco-hydro-geomorphic factors. This work demonstrates a path forward for mapping ALT at high spatial resolution and across sufficiently large regions for improved understanding and predictions of coupled dynamics among permafrost, hydrology, and land-surface processes from readily available remote sensing data.


Earth’s Future | 2015

Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

Jon D. Pelletier; A. Brad Murray; Jennifer L. Pierce; Paul R. Bierman; David D. Breshears; Benjamin T. Crosby; Michael A. Ellis; Efi Foufoula-Georgiou; Arjun M. Heimsath; Chris Houser; Nicholas Lancaster; Marco Marani; Dorothy J. Merritts; Laura J. Moore; Joel L. Pederson; Michael J. Poulos; Tammy M. Rittenour; Joel C. Rowland; Peter Ruggiero; Dylan J. Ward; Andrew D. Wickert; E. M. Yager

In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earths surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.


Reviews of Geophysics | 2015

Dynamics of River Mouth Deposits

Sergio Fagherazzi; Douglas A. Edmonds; William Nardin; Nicoletta Leonardi; Alberto Canestrelli; Federico Falcini; Douglas J. Jerolmack; Giulio Mariotti; Joel C. Rowland; Rudy Slingerland

Bars and subaqueous levees often form at river mouths due to high sediment availability. Once these deposits emerge and develop into islands, they become important elements of the coastal landscape, hosting rich ecosystems. Sea level rise and sediment starvation are jeopardizing these landforms, motivating a thorough analysis of the mechanisms responsible for their formation and evolution. Here we present recent studies on the dynamics of mouth bars and subaqueous levees. The review encompasses both hydrodynamic and morphological results. We first analyze the hydrodynamics of the water jet exiting a river mouth. We then show how this dynamics coupled to sediment transport leads to the formation of mouth bars and levees. Specifically, we discuss the role of sediment eddy diffusivity and potential vorticity on sediment redistribution and related deposits. The effect of waves, tides, sediment characteristics, and vegetation on river mouth deposits is included in our analysis, thus accounting for the inherent complexity of the coastal environment where these landforms are common. Based on the results presented herein, we discuss in detail how river mouth deposits can be used to build new land or restore deltaic shorelines threatened by erosion.


Remote Sensing Letters | 2013

Arctic tundra ice-wedge landscape characterization by active contours without edges and structural analysis using high-resolution satellite imagery

Alexei N. Skurikhin; Chandana Gangodagamage; Joel C. Rowland; Cathy J. Wilson

In this letter, we present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components, such as troughs, ponds, rivers and lakes, using high spatial resolution satellite imagery. The approach starts by segmenting water bodies from an image, which are then categorized using shape-based classification. Segmentation uses combination of multispectral bands and is based on the active contours without edges technique. The segmentation is robust to noise and can detect objects with weak boundaries, which is important for the extraction of troughs. Classification of the regions is accomplished by utilizing distance transform and regional structural characteristics. The approach is evaluated using 0.6 m resolution WorldView-2 satellite image of ice-wedge polygonal tundra. The segmentation user’s and producer’s accuracies are approximately 92% and 97%, respectively. Visual inspection of the classification results has demonstrated qualitatively accurate object categorization.


Journal of Applied Remote Sensing | 2014

Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

Daniela I. Moody; Steven P. Brumby; Joel C. Rowland; Garrett L. Altmann

Abstract We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. Our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.


Proceedings of SPIE | 2013

Undercomplete learned dictionaries for land cover classification in multispectral imagery of Arctic landscapes using CoSA: clustering of sparse approximations

Daniela I. Moody; Steven P. Brumby; Joel C. Rowland; Chandana Gangodagamage

Techniques for automated feature extraction, including neuroscience-inspired machine vision, are of great interest for landscape characterization and change detection in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methodologies to the environmental sciences, using state-of-theart adaptive signal processing, combined with compressive sensing and machine learning techniques. We use a Hebbian learning rule to build undercomplete spectral-textural dictionaries that are adapted to the data. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using our CoSA algorithm: unsupervised Clustering of Sparse Approximations. We demonstrate our method using multispectral Worldview-2 data from three Arctic study areas: Barrow, Alaska; the Selawik River, Alaska; and a watershed near the Mackenzie River delta in northwest Canada. Our goal is to develop a robust classification methodology that will allow for the automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and geomorphic characteristics. To interpret and assign land cover categories to the clusters we both evaluate the spectral properties of the clusters and compare the clusters to both field- and remote sensing-derived classifications of landscape attributes. Our work suggests that neuroscience-based models are a promising approach to practical pattern recognition problems in remote sensing.


Hydrogeology Journal | 2016

Preface: Land subsidence processes

Devin L. Galloway; Gilles Erkens; Eve L. Kuniansky; Joel C. Rowland

Both natural and anthropogenic land subsidence are global phenomena caused by a variety of factors, many of which are related to hydrogeologic processes. Common natural subsidence processes include consolidation related to sediment loading, tectonics, volcanism, and dissolution of relatively soluble carbonate and evaporite minerals. Some natural subsidence processes are directly influenced by human activities related to land and water use and by climatic variability. The development of water resources to support human habitation and cultivation for agriculture typically results in the use and diversion of available surface-water supplies and a reliance on groundwater supplies. These practices can alter the natural hydrologic system in ways that amplify natural subsidence processes or create new anthropogenic subsidence. For example, engineered diversion of runoff can focus recharge in areas susceptible to mineral dissolution which can lead to sinkholes or other collapse features in the karst landscape, or engineered drainage of wetlands or saturated organic soils can cause oxidation and consolidation of the soils. Anthropogenic groundwater abstraction from susceptible (generally, unconsolidated alluvial, fluvial and lacustrine sediments) aquifer systems to support water use principally for agriculture, municipal-industrial and energy development typically can lead to local and regional groundwater storage depletion and accompanying aquifersystem compaction and land subsidence related to increases in effective stresses caused by groundwater-level declines. Note that the terms ‘compaction’, commonly used by geologists, and ‘consolidation’, commonly used in soil mechanics, are used interchangeably in this preface and theme issue. Climate variation in terms of global warming, whether natural or anthropogenic, can indirectly cause glacial isostatic adjustments (uplift and subsidence) of the Earth’s crust related to melting of ice sheets, or can thaw permafrost with subsequent loss of ice volume and drainage of shallow groundwater leading to mechanical and even oxidation mediated subsidence. Climate variation may result in either reductions (droughts) or enhancements (wet periods) of precipitation, surface runoff and groundwater recharge. These reductions can cause subsidence owing to lowered groundwater levels contributing to aquifersystem compaction and to oxidation and consolidation of organic soils; enhancements can cause subsidence owing to increased dissolution of karst minerals and reduced mechanical support for pre-existing karst features. The 14 articles (13 papers and one essay) constituting this theme issue address several of the subsidence processes where human use of natural resources and climate variability have combined to create critical anthropogenic land subsidence problems: oxidation and consolidation of organic soils (three articles), dissolution and collapse of carbonate and evaporite rocks (karst) (three articles), thawing permafrost (thermokarst) (one article) and aquifer-system compaction (seven articles). Each of these subsidence processes is intricately related to the Published in the theme issue BLand Subsidence Processes^


data compression communications and processing | 2012

Learning sparse discriminative representations for land cover classification in the Arctic

Daniela I. Moody; Steven P. Brumby; Joel C. Rowland; Chandana Gangodagamage

Neuroscience-inspired machine vision algorithms are of current interest in the areas of detection and monitoring of climate change impacts, and general Land Use/Land Cover classification using satellite image data. We describe an approach for automatic classification of land cover in multispectral satellite imagery of the Arctic using sparse representations over learned dictionaries. We demonstrate our method using DigitalGlobe Worldview-2 8-band visible/near infrared high spatial resolution imagery of the MacKenzie River basin. We use an on-line batch Hebbian learning rule to build spectral-textural dictionaries that are adapted to this multispectral data. We learn our dictionaries from millions of overlapping image patches and then use a pursuit search to generate sparse classification features. We explore unsupervised clustering in the sparse representation space to produce land-cover category labels. This approach combines spectral and spatial textural characteristics to detect geologic, vegetative, and hydrologic features. We compare our technique to standard remote sensing algorithms. Our results suggest that neuroscience-based models are a promising approach to practical pattern recognition problems in remote sensing, even for datasets using spectral bands not found in natural visual systems.

Collaboration


Dive into the Joel C. Rowland's collaboration.

Top Co-Authors

Avatar

Cathy J. Wilson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steven P. Brumby

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garrett L. Altmann

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Chandana Gangodagamage

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniela I. Moody

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anna Liljedahl

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Bryan J. Travis

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Craig E. Tweedie

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge