Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel D. Baines is active.

Publication


Featured researches published by Joel D. Baines.


Nature Reviews Microbiology | 2011

Herpesviruses remodel host membranes for virus egress

David C. Johnson; Joel D. Baines

Herpesviruses replicate their DNA and package this DNA into capsids in the nucleus. These capsids then face substantial obstacles to their release from cells. Unlike other DNA viruses, herpesviruses do not depend on disruption of nuclear and cytoplasmic membranes for their release. Enveloped particles are formed by budding through inner nuclear membranes, and then these perinuclear enveloped particles fuse with outer nuclear membranes. Unenveloped capsids in the cytoplasm are decorated with tegument proteins and then undergo secondary envelopment by budding into trans-Golgi network membranes, producing infectious particles that are released. In this Review, we describe the remodelling of host membranes that facilitates herpesvirus egress.


Journal of Virology | 2002

Ultrastructural Localization of the Herpes Simplex Virus Type 1 UL31, UL34, and US3 Proteins Suggests Specific Roles in Primary Envelopment and Egress of Nucleocapsids

Ashley E. Reynolds; Elizabeth Wills; Richard J. Roller; Brent J. Ryckman; Joel D. Baines

ABSTRACT The wild-type UL31, UL34, and US3 proteins localized on nuclear membranes and perinuclear virions; the US3 protein was also on cytoplasmic membranes and extranuclear virions. The UL31 and UL34 proteins were not detected in extracellular virions. US3 deletion caused (i) virion accumulation in nuclear membrane invaginations, (ii) delayed virus production onset, and (iii) reduced peak virus titers. These data support the herpes simplex virus type 1 deenvelopment-reenvelopment model of virion egress and suggest that the US3 protein plays an important, but nonessential, role in the egress pathway.


Journal of Virology | 2001

UL31 and UL34 Proteins of Herpes Simplex Virus Type 1 Form a Complex That Accumulates at the Nuclear Rim and Is Required for Envelopment of Nucleocapsids

Ashley E. Reynolds; Brent J. Ryckman; Joel D. Baines; Yuping Zhou; Li Liang; Richard J. Roller

ABSTRACT The herpes simplex virus type 1 (HSV-1) UL34 protein is likely a type II membrane protein that localizes within the nuclear membrane and is required for efficient envelopment of progeny virions at the nuclear envelope, whereas the UL31 gene product of HSV-1 is a nuclear matrix-associated phosphoprotein previously shown to interact with UL34 protein in HSV-1-infected cell lysates. For these studies, polyclonal antisera directed against purified fusion proteins containing UL31 protein fused to glutathione-S-transferase (UL31-GST) and UL34 protein fused to GST (UL34-GST) were demonstrated to specifically recognize the UL31 and UL34 proteins of approximately 34,000 and 30,000 Da, respectively. The UL31 and UL34 gene products colocalized in a smooth pattern throughout the nuclear rim of infected cells by 10 h postinfection. UL34 protein also accumulated in pleiomorphic cytoplasmic structures at early times and associated with an altered nuclear envelope late in infection. Localization of UL31 protein at the nuclear rim required the presence of UL34 protein, inasmuch as cells infected with a UL34 null mutant virus contained UL31 protein primarily in central intranuclear domains separate from the nuclear rim, and to a lesser extent in the cytoplasm. Conversely, localization of UL34 protein exclusively at the nuclear rim required the presence of the UL31 gene product, inasmuch as UL34 protein was detectable at the nuclear rim, in replication compartments, and in the cytoplasm of cells infected with a UL31 null virus. When transiently expressed in the absence of other viral factors, UL31 protein localized diffusely in the nucleoplasm, whereas UL34 protein localized primarily in the cytoplasm and at the nuclear rim. In contrast, coexpression of the UL31 and UL34 proteins was sufficient to target both proteins exclusively to the nuclear rim. The proteins were also shown to directly interact in vitro in the absence of other viral proteins. In cells infected with a virus lacking the US3-encoded protein kinase, previously shown to phosphorylate the UL34 gene product, UL31 and UL34 proteins colocalized in small punctate areas that accumulated on the nuclear rim. Thus, US3 kinase is required for even distribution of UL31 and UL34 proteins throughout the nuclear rim. Taken together with the similar phenotypes of the UL31 and UL34 deletion mutants, these data strongly suggest that the UL31 and UL34 proteins form a complex that accumulates at the nuclear membrane and plays an important role in nucleocapsid envelopment at the inner nuclear membrane.


Journal of Virology | 2006

Herpes Simplex Virus Type 1 Infection Induces Activation and Recruitment of Protein Kinase C to the Nuclear Membrane and Increased Phosphorylation of Lamin B

Richard Park; Joel D. Baines

ABSTRACT We report that herpes simplex virus type 1 (HSV-1) infection leads to the recruitment of protein kinase C (PKC) to the nuclear rim. In HEp-2 cells, PKC recruitment to the nuclear rim was initiated between 8 h and 12 h postinfection. PKCδ, a proapoptotic kinase, was completely recruited to the nuclear rim upon infection with HSV-1. PKCα was less dramatically relocalized mostly at the nuclear rim upon infection, although some PKCα remained in the cytoplasm. PKCζ-specific immunofluorescence was not significantly relocated to the nuclear rim. The UL34 and UL31 proteins, as well as their association, were each required for PKC recruitment to the nuclear rim. The HSV-1 US3 protein product, a kinase which regulates the phosphorylation state and localization of UL34, was not required for PKC recruitment to the nuclear rim; however, it was required for proper localization along the nuclear rim, as PKC appeared unevenly distributed along the nuclear rim of cells infected with US3 null and kinase-dead mutants. HSV-1 infection induced the phosphorylation of both lamin B and PKC. Elevated lamin B phosphorylation in HSV-1-infected cells was partially reduced by inhibitors of PKC. The data suggest a model in which kinases that normally disassemble the nuclear lamina during apoptosis are recruited to the nuclear membrane through functions requiring UL31 and UL34. We hypothesize that the recruitment of PKC functions to phosphorylate lamin B to help modify the nuclear lamina and promote budding of nucleocapsids at the inner nuclear membrane.


Journal of Virology | 2004

Conformational Changes in the Nuclear Lamina Induced by Herpes Simplex Virus Type 1 Require Genes UL31 and UL34

Ashley E. Reynolds; Li Liang; Joel D. Baines

ABSTRACT The herpes simplex virus type 1 (HSV-1) UL31 and UL34 proteins are dependent on each other for proper targeting to the nuclear membrane and are required for efficient envelopment of nucleocapsids at the inner nuclear membrane. In this work, we show that whereas the solubility of lamins A and C (lamin A/C) was not markedly increased, HSV induced conformational changes in the nuclear lamina of infected cells, as viewed after staining with three different lamin A/C-specific antibodies. In one case, reactivity with a monoclonal antibody that recognizes an epitope in the lamin tail domain was greatly reduced in HSV-infected cells. This apparent HSV-induced epitope masking required both UL31 and UL34, but these proteins were not sufficient to mask the epitope in uninfected cells, indicating that other HSV proteins are also required. In the second case, staining with a rabbit polyclonal antibody that primarily recognizes epitopes in the lamin A/C rod domain revealed that UL34 is required for HSV-induced decreased availability of epitopes for reaction with the antibody, whereas UL31 protein was dispensable for this effect. Still another polyclonal antibody indicated virtually no difference in lamin A/C staining in infected versus uninfected cells, indicating that the HSV-induced changes are more conformational than the result of lamin depletion at the nuclear rim. Further evidence supporting an interaction between the nuclear lamina and the UL31/UL34 protein complex includes the observations that (i) overexpression of the UL31 protein in uninfected cells was sufficient to relocalize lamin A/C from the nuclear rim into nucleoplasmic aggregates, (ii) overexpression of UL34 was sufficient to relocalize some lamin A/C into the cytoplasm, and (iii) both UL31 and UL34 could directly bind lamin A/C in vitro. These studies suggest that the UL31 and UL34 proteins modify the conformation of the nuclear lamina in infected cells, possibly by direct interaction with lamin A/C, and that other proteins are also likely involved. Given that the nuclear lamina potentially excludes nucleocapsids from envelopment sites at the inner nuclear membrane, the lamina alteration may reflect a role of the UL31/UL34 protein complex in perturbing the lamina to promote nucleocapsid egress from the nucleus. Alternatively, the data are compatible with a role of the lamina in targeting the UL31/UL34 protein complex to the nuclear membrane.


Journal of Virology | 2007

US3 of Herpes Simplex Virus Type 1 Encodes a Promiscuous Protein Kinase That Phosphorylates and Alters Localization of Lamin A/C in Infected Cells

Fan Mou; Tom Forest; Joel D. Baines

ABSTRACT The herpes simplex virus type 1 (HSV-1) US3 gene encodes a serine/threonine kinase that, when inactivated, causes capsids to aggregate aberrantly between the inner and outer nuclear membranes (INM and ONM, respectively) within evaginations/extensions of the perinuclear space. In both Hep2 cells and an engineered cell line derived from Hep2 cells expressing lamin A/C fused to enhanced green fluorescent protein (eGFP-lamin A/C), lamin A/C localized mostly in a reticular pattern with small regions of the INM devoid of eGFP-lamin A/C when they were either mock infected or infected with wild-type HSV-1(F). Cells infected with HSV-1(F) also contained some larger diffuse regions lacking lamin A/C. Proteins UL31 and UL34, markers of potential envelopment sites at the INM and perinuclear virions, localized within the regions devoid of lamin A/C and also in regions containing lamin A/C. Similar to previous observations with Vero cells (S. L. Bjerke and R. J. Roller, Virology 347:261-276, 2006), the proteins UL34 and UL31 localized exclusively in very discrete regions of the nuclear lamina lacking lamin A/C in the absence of US3 kinase activity. To determine how US3 alters lamin A/C distribution, US3 was purified and shown to phosphorylate lamin A/C at multiple sites in vitro, despite the presence of only one putative US3 kinase consensus site in the lamin A/C sequence. US3 kinase activity was also sufficient to invoke partial solubilization of lamin A/C from permeabilized Hep2 cell nuclei in an ATP-dependent manner. Two-dimensional electrophoretic analyses of lamin A/C revealed that lamin A/C is phosphorylated in HSV-infected cells, and the full spectrum of phosphorylation requires US3 kinase activity. These data suggest that US3 kinase activity regulates HSV-1 capsid nuclear egress at least in part by phosphorylation of lamin A/C.


Journal of Virology | 2007

Type I Interferon Production during Herpes Simplex Virus Infection Is Controlled by Cell-Type-Specific Viral Recognition through Toll-Like Receptor 9, the Mitochondrial Antiviral Signaling Protein Pathway, and Novel Recognition Systems

Simon B. Rasmussen; Louise N. Sørensen; Lene Malmgaard; Nina Ank; Joel D. Baines; Zhijian J. Chen; Søren R. Paludan

ABSTRACT Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes simplex virus (HSV) infection. We show that early production of IFN in vivo is mediated through Toll-like receptor 9 (TLR9) and plasmacytoid dendritic cells, whereas the subsequent alpha/beta IFN (IFN-α/β) response is derived from several cell types and induced independently of TLR9. In conventional DCs, the IFN response occurred independently of viral replication but was dependent on viral entry. Moreover, using a HSV-1 UL15 mutant, which fails to package viral DNA into the virion, we found that entry-dependent IFN induction also required the presence of viral genomic DNA. In macrophages and fibroblasts, where the virus was able to replicate, HSV-induced IFN-α/β production was dependent on both viral entry and replication, and ablated in cells unable to signal through the mitochondrial antiviral signaling protein pathway. Thus, during an HSV infection in vivo, multiple mechanisms of pathogen recognition are active, which operate in cell-type- and time-dependent manners to trigger expression of type I IFN and coordinate the antiviral response.


Nature Cell Biology | 2005

Active intranuclear movement of herpesvirus capsids

Thomas W. Forest; Sandra Barnard; Joel D. Baines

Although small molecules diffuse rapidly through the interphase nucleus, recent reports indicate that nuclear diffusion is limited for particles that are larger than 100 nm in diameter. Given the apparent size limits to nuclear diffusion, there is some debate as to whether the movement of large particles should be attributed to diffusion or to active transport. Here, we show that 125 nm-diameter herpes simplex virus 1 (HSV-1) capsids are actively transported within infected nuclei. Movement is directed, temperature- and energy-dependent, sensitive to the putative myosin inhibitor 2,3-butanedione monoxime (BDM) and to actin depolymerization with latrunculin-A, but insensitive to actin depolymerization with cytochalasin-D.


Journal of Virology | 2009

Phosphorylation of the UL31 Protein of Herpes Simplex Virus 1 by the US3-Encoded Kinase Regulates Localization of the Nuclear Envelopment Complex and Egress of Nucleocapsids

Fan Mou; Elizabeth Wills; Joel D. Baines

ABSTRACT Herpes simplex virus 1 nucleocapsids bud through the inner nuclear membrane (INM) into the perinuclear space to obtain a primary viral envelope. This process requires a protein complex at the INM composed of the UL31 and UL34 gene products. While it is clear that the viral kinase encoded by the US3 gene regulates the localization of pUL31/pUL34 within the INM, the molecular mechanism by which this is accomplished remains enigmatic. Here, we have determined the following. (i) The N terminus of pUL31 is indispensable for the proteins normal function and contains up to six serines that are phosphorylated by the US3 kinase during infection. (ii) Phosphorylation at these six serines was not essential for a productive infection but was required for optimal viral growth kinetics. (iii) In the presence of active US3 kinase, changing the serines to alanine caused the pUL31/pUL34 complex to aggregate at the nuclear rim and caused some virions to accumulate aberrantly in herniations of the nuclear membrane, much as in cells infected with a US3 kinase-dead mutant. (iv) The replacement of the six serines of pUL31 with glutamic acid largely restored the smooth distribution of pUL34/pUL31 at the nuclear membrane and precluded the accumulation of virions in herniations whether or not US3 kinase was active but also precluded the optimal primary envelopment of nucleocapsids. These observations indicate that the phosphorylation of pUL31 by pUS3 represents an important regulatory event in the virion egress pathway that can account for much of pUS3s role in nuclear egress. The data also suggest that the dynamics of pUL31 phosphorylation modulate both the primary envelopment and the subsequent fusion of the nascent virion envelope with the outer nuclear membrane.


Journal of Virology | 2007

Emerin Is Hyperphosphorylated and Redistributed in Herpes Simplex Virus Type 1-Infected Cells in a Manner Dependent on both UL34 and US3

Natalie R. Leach; Susan L. Bjerke; Desire K. Christensen; Jacques M. Bouchard; Fan Mou; Richard Park; Joel D. Baines; Tokuko Haraguchi; Richard J. Roller

ABSTRACT Cells infected with wild-type herpes simplex virus type 1 (HSV-1) show disruption of the organization of the nuclear lamina that underlies the nuclear envelope. This disruption is reflected in changes in the localization and phosphorylation of lamin proteins. Here, we show that HSV-1 infection causes relocalization of the LEM domain protein emerin. In cells infected with wild-type virus, emerin becomes more mobile in the nuclear membrane, and in cells infected with viruses that fail to express UL34 protein (pUL34) and US3 protein (pUS3), emerin no longer colocalizes with lamins, suggesting that infection causes a loss of connection between emerin and the lamina. Infection causes hyperphosphorylation of emerin in a manner dependent upon both pUL34 and pUS3. Some emerin hyperphosphorylation can be inhibited by the protein kinase Cδ (PKCδ) inhibitor rottlerin. Emerin and pUL34 interact physically, as shown by pull-down and coimmunoprecipitation assays. Emerin expression is not, however, necessary for infection, since virus growth is not impaired in cells derived from emerin-null transgenic mice. The results suggest a model in which pUS3 and PKCδ that has been recruited by pUL34 hyperphosphorylate emerin, leading to disruption of its connections with lamin proteins and contributing to the disruption of the nuclear lamina. Changes in emerin localization, nuclear shape, and lamin organization characteristic of cells infected with wild-type HSV-1 also occur in cells infected with recombinant virus that does not make viral capsids, suggesting that these changes occur independently of capsid envelopment.

Collaboration


Dive into the Joel D. Baines's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge