Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel E. Kostka is active.

Publication


Featured researches published by Joel E. Kostka.


Applied and Environmental Microbiology | 2011

Hydrocarbon-Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands Impacted by the Deepwater Horizon Oil Spill

Joel E. Kostka; Om Prakash; Will A. Overholt; Stefan J. Green; Gina Freyer; Andy Canion; Jonathan Delgardio; Nikita Norton; Terry C. Hazen; Markus Huettel

ABSTRACT A significant portion of oil from the recent Deepwater Horizon (DH) oil spill in the Gulf of Mexico was transported to the shoreline, where it may have severe ecological and economic consequences. The objectives of this study were (i) to identify and characterize predominant oil-degrading taxa that may be used as model hydrocarbon degraders or as microbial indicators of contamination and (ii) to characterize the in situ response of indigenous bacterial communities to oil contamination in beach ecosystems. This study was conducted at municipal Pensacola Beach, FL, where chemical analysis revealed weathered oil petroleum hydrocarbon (C8 to C40) concentrations ranging from 3.1 to 4,500 mg kg−1 in beach sands. A total of 24 bacterial strains from 14 genera were isolated from oiled beach sands and confirmed as oil-degrading microorganisms. Isolated bacterial strains were primarily Gammaproteobacteria, including representatives of genera with known oil degraders (Alcanivorax, Marinobacter, Pseudomonas, and Acinetobacter). Sequence libraries generated from oiled sands revealed phylotypes that showed high sequence identity (up to 99%) to rRNA gene sequences from the oil-degrading bacterial isolates. The abundance of bacterial SSU rRNA gene sequences was ∼10-fold higher in oiled (0.44 × 107 to 10.2 × 107 copies g−1) versus clean (0.024 × 107 to 1.4 × 107 copies g−1) sand. Community analysis revealed a distinct response to oil contamination, and SSU rRNA gene abundance derived from the genus Alcanivorax showed the largest increase in relative abundance in contaminated samples. We conclude that oil contamination from the DH spill had a profound impact on the abundance and community composition of indigenous bacteria in Gulf beach sands, and our evidence points to members of the Gammaproteobacteria (Alcanivorax, Marinobacter) and Alphaproteobacteria (Rhodobacteraceae) as key players in oil degradation there.


Standards in Genomic Sciences | 2010

Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project

Jack A. Gilbert; Folker Meyer; Dion Antonopoulos; Pavan Balaji; C. Titus Brown; Christopher T. Brown; Narayan Desai; Jonathan A. Eisen; Dirk Evers; Dawn Field; Wu Feng; Daniel H. Huson; Janet K. Jansson; Rob Knight; James Knight; Eugene Kolker; Kostas Konstantindis; Joel E. Kostka; Nikos C. Kyrpides; Rachel Mackelprang; Alice C. McHardy; Christopher Quince; Jeroen Raes; Alexander Sczyrba; Ashley Shade; Rick Stevens

Between July 18th and 24th 2010, 26 leading microbial ecology, computation, bioinformatics and statistics researchers came together in Snowbird, Utah (USA) to discuss the challenge of how to best characterize the microbial world using next-generation sequencing technologies. The meeting was entitled “Terabase Metagenomics” and was sponsored by the Institute for Computing in Science (ICiS) summer 2010 workshop program. The aim of the workshop was to explore the fundamental questions relating to microbial ecology that could be addressed using advances in sequencing potential. Technological advances in next-generation sequencing platforms such as the Illumina HiSeq 2000 can generate in excess of 250 billion base pairs of genetic information in 8 days. Thus, the generation of a trillion base pairs of genetic information is becoming a routine matter. The main outcome from this meeting was the birth of a concept and practical approach to exploring microbial life on earth, the Earth Microbiome Project (EMP). Here we briefly describe the highlights of this meeting and provide an overview of the EMP concept and how it can be applied to exploration of the microbiome of each ecosystem on this planet.


Geochimica et Cosmochimica Acta | 1995

Chemical and biological reduction of Mn (III)-pyrophosphate complexes: Potential importance of dissolved Mn (III) as an environmental oxidant

Joel E. Kostka; George W. Luther; Kenneth H. Nealson

Dissolved Mn (III) is a strong oxidant which could play an important role in the biogeochemistry of aquatic environments, but little is known about this form of Mn. Mn(III) was shown to form a stable complex with pyrophosphate which is easily measured by uv-vis spectrophotometry. The Mn(III)-pyrophosphate complex was produced at concentrations of 5 μM to 10 mM Mn at neutral pH. Inorganic electron donors, Fe(II) and sulfide, abiotically reduced Mn(III)-pyrophosphate in seconds with a stoichiometry of 1:1 and near 1:2 reductant:Mn (III), respectively. Shewanella putrefaciens strain MR-1 catalyzed the reduction of Mn(III)-pyrophosphate with formate or lactate as electron donors. Reduction of Mn(III) catalyzed by MR-1 was inhibited under aerobic conditions but only slightly under anaerobic conditions upon addition of the alternate electron acceptor, nitrate. MR-1 catalyzed reduction was also inhibited by metabolic inhibitors including formaldehyde, tetrachlorosalicylanilide (TCS), carbonyl cyanide m-chlorophenylhydrazone (CCCP), 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), but not antimycin A. When formate or lactate served as electron donor for Mn(III) reduction, carbon oxidation to CO2 was coupled to the respiration of Mn (III). Using the incorporation of 3H-leucine into the TCA-insoluble fraction of culture extracts, it was shown that Mn (III) reduction was coupled to protein synthesis in MR-1. These data indicate that Mn (III) complexes may be produced under conditions found in aquatic environments and that the reduction of Mn(III) can be coupled to the cycling of Fe, S, and C.


Clays and Clay Minerals | 2003

MICROSCOPIC EVIDENCE FOR MICROBIAL DISSOLUTION OF SMECTITE

Hailiang Dong; Joel E. Kostka; Jinwook Kim

This study was undertaken to investigate mechanisms of mineral transformations associated with microbial reduction of structural Fe(III) in smectite. Shewanella oneidensis strain MR-1 cells were inoculated with lactate as the electron donor and Fe(III) in smectite as the electron acceptor. The extent of Fe(III) reduction was observed to reach up to 26%. Reduction proceeded via association of live bacterial cells with smectite. At the end of incubation, a large fraction of starting smectite was transformed to euhedral flakes of biogenic smectite with different morphology, structure, and composition. Lattice-fringe images obtained from environmental cell transmission electron microscope displayed a decrease of layer spacing from 1.5±0.1 nm for the unreduced smectite to 1.1±0.1 nm for the reduced smectite. The biogenic smectite contained more abundant interlayer cations, apparently as a result of charge compensation for the reduced oxidation state of Fe in the octahedral site. To capture the dynamics of smectite reduction, a separate experiment was designed. The experiment consisted of several systems, where various combinations of carbon source (lactate) and different concentrations of AQDS, an electron shuttle, were used. Selected area electron diffraction patterns of smectite showed progressive change from single-crystal patterns for the control experiment (oxidized, unaltered smectite), to diffuse ring patterns for the no-carbon experiment (oxidized, but altered smectite), to well-ordered single crystal pattern for the experiment amended with 1 mM AQDS (well crystalline, biogenic smectite). Large crystals of vivianite and finegrained silica of biogenic origin were also detected in the bioreduced sample. These data collectively demonstrate that microbial reduction of Fe(III) in smectite was achieved via dissolution of smectite and formation of biogenic minerals. The microbially mediated mineral dissolution-precipitation mechanism has important implications for mineral reactions in natural environments, where the reaction rates may be substantially enhanced by the presence of bacteria.


Annual Review of Marine Science | 2015

Microbial Responses to the Deepwater Horizon Oil Spill: From Coastal Wetlands to the Deep Sea

G.M. King; Joel E. Kostka; Terry C. Hazen; Patricia A. Sobecky

The Deepwater Horizon oil spill in the northern Gulf of Mexico represents the largest marine accidental oil spill in history. It is distinguished from past spills in that it occurred at the greatest depth (1,500 m), the amount of hydrocarbon gas (mostly methane) lost was equivalent to the mass of crude oil released, and dispersants were used for the first time in the deep sea in an attempt to remediate the spill. The spill is also unique in that it has been characterized with an unprecedented level of resolution using next-generation sequencing technologies, especially for the ubiquitous hydrocarbon-degrading microbial communities that appeared largely to consume the gases and to degrade a significant fraction of the petroleum. Results have shown an unexpectedly rapid response of deep-sea Gammaproteobacteria to oil and gas and documented a distinct succession correlated with the control of the oil flow and well shut-in. Similar successional events, also involving Gammaproteobacteria, have been observed in nearshore systems as well.


Applied and Environmental Microbiology | 2008

Functional Diversity and Electron Donor Dependence of Microbial Populations Capable of U(VI) Reduction in Radionuclide-Contaminated Subsurface Sediments

Denise M. Akob; Heath J. Mills; Thomas M. Gihring; Lee J. Kerkhof; Joseph W. Stucki; Alexandre S. Anastácio; Kuk-Jeong Chin; Kirsten Küsel; Anthony V. Palumbo; David B. Watson; Joel E. Kostka

ABSTRACT In order to elucidate the potential mechanisms of U(VI) reduction for the optimization of bioremediation strategies, the structure-function relationships of microbial communities were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate. A polyphasic approach was used to assess the functional diversity of microbial populations likely to catalyze electron flow under conditions proposed for in situ uranium bioremediation. The addition of ethanol and glucose as supplemental electron donors stimulated microbial nitrate and Fe(III) reduction as the predominant terminal electron-accepting processes (TEAPs). U(VI), Fe(III), and sulfate reduction overlapped in the glucose treatment, whereas U(VI) reduction was concurrent with sulfate reduction but preceded Fe(III) reduction in the ethanol treatments. Phyllosilicate clays were shown to be the major source of Fe(III) for microbial respiration by using variable-temperature Mössbauer spectroscopy. Nitrate- and Fe(III)-reducing bacteria (FeRB) were abundant throughout the shifts in TEAPs observed in biostimulated microcosms and were affiliated with the genera Geobacter, Tolumonas, Clostridium, Arthrobacter, Dechloromonas, and Pseudomonas. Up to two orders of magnitude higher counts of FeRB and enhanced U(VI) removal were observed in ethanol-amended treatments compared to the results in glucose-amended treatments. Quantification of citrate synthase (gltA) levels demonstrated a stimulation of Geobacteraceae activity during metal reduction in carbon-amended microcosms, with the highest expression observed in the glucose treatment. Phylogenetic analysis indicated that the active FeRB share high sequence identity with Geobacteraceae members cultivated from contaminated subsurface environments. Our results show that the functional diversity of populations capable of U(VI) reduction is dependent upon the choice of electron donor.


Applied and Environmental Microbiology | 2010

Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination.

Stefan J. Green; Om Prakash; Thomas M. Gihring; Denise M. Akob; Puja Jasrotia; Philip M. Jardine; David B. Watson; Steven D. Brown; Anthony V. Palumbo; Joel E. Kostka

ABSTRACT In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energys Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.


International Journal of Systematic and Evolutionary Microbiology | 2010

Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination.

Om Prakash; Thomas M. Gihring; Dava D. Dalton; Kuk-Jeong Chin; Stefan J. Green; Denise M. Akob; Greg Wanger; Joel E. Kostka

An Fe(III)- and uranium(VI)-reducing bacterium, designated strain FRC-32(T), was isolated from a contaminated subsurface of the USA Department of Energy Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination of radionuclides and hydrocarbons. Analyses of both 16S rRNA gene and the Geobacteraceae-specific citrate synthase (gltA) mRNA gene sequences retrieved from ORFRC sediments indicated that this strain was abundant and active in ORFRC subsurface sediments undergoing uranium(VI) bioremediation. The organism belonged to the subsurface clade of the genus Geobacter and shared 92-98 % 16S rRNA gene and 75-81 % rpoB gene sequence similarities with other recognized species of the genus. In comparison to its closest relative, Geobacter uraniireducens Rf4(T), according to 16S rRNA gene sequence similarity, strain FRC-32(T) showed a DNA-DNA relatedness value of 21 %. Cells of strain FRC-32(T) were Gram-negative, non-spore-forming, curved rods, 1.0-1.5 microm long and 0.3-0.5 microm in diameter; the cells formed pink colonies in a semisolid cultivation medium, a characteristic feature of the genus Geobacter. The isolate was an obligate anaerobe, had temperature and pH optima for growth at 30 degrees C and pH 6.7-7.3, respectively, and could tolerate up to 0.7 % NaCl although growth was better in the absence of NaCl. Similar to other members of the Geobacter group, strain FRC-32(T) conserved energy for growth from the respiration of Fe(III)-oxyhydroxide coupled with the oxidation of acetate. Strain FRC-32(T) was metabolically versatile and, unlike its closest relative, G. uraniireducens, was capable of utilizing formate, butyrate and butanol as electron donors and soluble ferric iron (as ferric citrate) and elemental sulfur as electron acceptors. Growth on aromatic compounds including benzoate and toluene was predicted from preliminary genomic analyses and was confirmed through successive transfer with fumarate as the electron acceptor. Thus, based on genotypic, phylogenetic and phenotypic differences, strain FRC-32(T) is considered to represent a novel species of the genus Geobacter, for which the name Geobacter daltonii sp. nov. is proposed. The type strain is FRC-32(T) (=DSM 22248(T)=JCM 15807(T)).


Applied and Environmental Microbiology | 2012

Denitrifying Bacteria from the Genus Rhodanobacter Dominate Bacterial Communities in the Highly Contaminated Subsurface of a Nuclear Legacy Waste Site

Stefan J. Green; Om Prakash; Puja Jasrotia; Will A. Overholt; Erick Cardenas; Daniela Hubbard; James M. Tiedje; David B. Watson; Christopher W. Schadt; Scott C. Brooks; Joel E. Kostka

ABSTRACT The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.


Applied and Environmental Microbiology | 2011

A Limited Microbial Consortium Is Responsible for Extended Bioreduction of Uranium in a Contaminated Aquifer

Thomas M. Gihring; Gengxin Zhang; Craig C. Brandt; Scott C. Brooks; James H. Campbell; Susan L. Carroll; Craig S. Criddle; Stefan J. Green; P. M. Jardine; Joel E. Kostka; Kenneth Lowe; Tonia L. Mehlhorn; Will A. Overholt; David B. Watson; Zamin Yang; Wei-Min Wu; Christopher W. Schadt

ABSTRACT Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H2 production during EVO degradation appeared to stimulate NO3 −, Fe(III), U(VI), and SO4 2− reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms.

Collaboration


Dive into the Joel E. Kostka's collaboration.

Top Co-Authors

Avatar

Stefan J. Green

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

David B. Watson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise M. Akob

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Markus Huettel

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Om Prakash

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Will A. Overholt

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anthony V. Palumbo

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Scott C. Brooks

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge