Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joël Fardoux is active.

Publication


Featured researches published by Joël Fardoux.


Science | 2007

Legumes symbioses : Absence of Nod genes in photosynthetic bradyrhizobia

Eric Giraud; Lionel Moulin; David Vallenet; Valérie Barbe; Eddie Cytryn; Jean Christophe Avarre; Marianne Jaubert; Damien Simon; Fabienne Cartieaux; Yves Prin; Gilles Béna; Laura Hannibal; Joël Fardoux; Mila Kojadinovic; Laurie Vuillet; Aurélie Lajus; Stéphane Cruveiller; Zoé Rouy; Sophie Mangenot; Béatrice Segurens; Carole Dossat; William L. Franck; Woo Suk Chang; Elizabeth Saunders; David Bruce; Paul G. Richardson; Philippe Normand; Bernard Dreyfus; Gary Stacey; David W. Emerich

Leguminous plants (such as peas and soybeans) and rhizobial soil bacteria are symbiotic partners that communicate through molecular signaling pathways, resulting in the formation of nodules on legume roots and occasionally stems that house nitrogen-fixing bacteria. Nodule formation has been assumed to be exclusively initiated by the binding of bacterial, host-specific lipochito-oligosaccharidic Nod factors, encoded by the nodABC genes, to kinase-like receptors of the plant. Here we show by complete genome sequencing of two symbiotic, photosynthetic, Bradyrhizobium strains, BTAi1 and ORS278, that canonical nodABC genes and typical lipochito-oligosaccharidic Nod factors are not required for symbiosis in some legumes. Mutational analyses indicated that these unique rhizobia use an alternative pathway to initiate symbioses, where a purine derivative may play a key role in triggering nodule formation.


Molecular Plant-microbe Interactions | 2011

Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium Sp. Strain ORS285 : The nod-dependent versus the nod-independent symbiotic interaction

Katia Bonaldi; Daniel Gargani; Yves Prin; Joël Fardoux; Djamel Gully; Nico Nouwen; Sofie Goormachtig; Eric Giraud

Here, we present a comparative analysis of the nodulation processes of Aeschynomene afraspera and A. indica that differ in their requirement for Nod factors (NF) to initiate symbiosis with photosynthetic bradyrhizobia. The infection process and nodule organogenesis was examined using the green fluorescent protein-labeled Bradyrhizobium sp. strain ORS285 able to nodulate both species. In A. indica, when the NF-independent strategy is used, bacteria penetrated the root intercellularly between axillary root hairs and invaded the subepidermal cortical cells by invagination of the host cell wall. Whereas the first infected cortical cells collapsed, the infected ones immediately beneath kept their integrity and divided repeatedly to form the nodule. In A. afraspera, when the NF-dependent strategy is used, bacteria entered the plant through epidermal fissures generated by the emergence of lateral roots and spread deeper intercellularly in the root cortex, infecting some cortical cells during their progression. Whereas the infected cells of the lower cortical layers divided rapidly to form the nodule, the infected cells of the upper layers gave rise to an outgrowth in which the bacteria remained enclosed in large tubular structures. Together, two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features.


Nature Communications | 2014

Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes

Alba Silipo; Giuseppe Vitiello; Djamel Gully; Luisa Sturiale; Clémence Chaintreuil; Joël Fardoux; Daniel Gargani; Hae In Lee; Gargi Kulkarni; Nicolas Busset; Roberta Marchetti; Angelo Palmigiano; Herman Moll; Regina Engel; Rosa Lanzetta; Luigi Paduano; Michelangelo Parrilli; Woo Suk Chang; Otto Holst; Dianne K. Newman; Domenico Garozzo; Gerardino D'Errico; Eric Giraud; Antonio Molinaro

Lipopolysaccharides (LPSs) are major components of the outer membrane of Gram-negative bacteria and are essential for their growth and survival. They act as a structural barrier and play an important role in the interaction with eukaryotic hosts. Here we demonstrate that a photosynthetic Bradyrhizobium strain, symbiont of Aeschynomene legumes, synthesizes a unique LPS bearing a hopanoid covalently attached to lipid A. Biophysical analyses of reconstituted liposomes indicate that this hopanoid-lipid A structure reinforces the stability and rigidity of the outer membrane. In addition, the bacterium produces other hopanoid molecules not linked to LPS. A hopanoid-deficient strain, lacking a squalene hopene cyclase, displays increased sensitivity to stressful conditions and reduced ability to survive intracellularly in the host plant. This unusual combination of hopanoid and LPS molecules may represent an adaptation to optimize bacterial survival in both free-living and symbiotic states.


The ISME Journal | 2016

Rhizobium|[ndash]|legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS

Shin Okazaki; Panlada Tittabutr; Albin Teulet; Julien Thouin; Joël Fardoux; Clémence Chaintreuil; Djamel Gully; Jean François Arrighi; Noriyuki Furuta; Hiroki Miwa; Michiko Yasuda; Nico Nouwen; Neung Teaumroong; Eric Giraud

The occurrence of alternative Nod factor (NF)-independent symbiosis between legumes and rhizobia was first demonstrated in some Aeschynomene species that are nodulated by photosynthetic bradyrhizobia lacking the canonical nodABC genes. In this study, we revealed that a large diversity of non-photosynthetic bradyrhizobia, including B. elkanii, was also able to induce nodules on the NF-independent Aeschynomene species, A. indica. Using cytological analysis of the nodules and the nitrogenase enzyme activity as markers, a gradient in the symbiotic interaction between bradyrhizobial strains and A. indica could be distinguished. This ranged from strains that induced nodules that were only infected intercellularly to rhizobial strains that formed nodules in which the host cells were invaded intracellularly and that displayed a weak nitrogenase activity. In all non-photosynthetic bradyrhizobia, the type III secretion system (T3SS) appears required to trigger nodule organogenesis. In contrast, genome sequence analysis revealed that apart from a few exceptions, like the Bradyrhizobium ORS285 strain, photosynthetic bradyrhizobia strains lack a T3SS. Furthermore, analysis of the symbiotic properties of an ORS285 T3SS mutant revealed that the T3SS could have a positive or negative role for the interaction with NF-dependent Aeschynomene species, but that it is dispensable for the interaction with all NF-independent Aeschynomene species tested. Taken together, these data indicate that two NF-independent symbiotic processes are possible between legumes and rhizobia: one dependent on a T3SS and one using a so far unknown mechanism.


Plant Physiology | 2015

Convergent Evolution of Endosymbiont Differentiation in Dalbergioid and Inverted Repeat-Lacking Clade Legumes Mediated by Nodule-Specific Cysteine-Rich Peptides

Pierre Czernic; Djamel Gully; Fabienne Cartieaux; Lionel Moulin; Ibtissem Guefrachi; Delphine Patrel; Olivier Pierre; Joël Fardoux; Clémence Chaintreuil; Phuong Nguyen; Frédéric Gressent; Corinne Da Silva; Julie Poulain; Patrick Wincker; Valérie Rofidal; Sonia Hem; Quentin Barrière; Jean-François Arrighi; Peter Mergaert; Eric Giraud

Several species from an ancient legume lineage independently evolved a novel class of cysteine-rich peptides to impose a differentiation process on their endosymbionts. Nutritional symbiotic interactions require the housing of large numbers of microbial symbionts, which produce essential compounds for the growth of the host. In the legume-rhizobium nitrogen-fixing symbiosis, thousands of rhizobium microsymbionts, called bacteroids, are confined intracellularly within highly specialized symbiotic host cells. In Inverted Repeat-Lacking Clade (IRLC) legumes such as Medicago spp., the bacteroids are kept under control by an arsenal of nodule-specific cysteine-rich (NCR) peptides, which induce the bacteria in an irreversible, strongly elongated, and polyploid state. Here, we show that in Aeschynomene spp. legumes belonging to the more ancient Dalbergioid lineage, bacteroids are elongated or spherical depending on the Aeschynomene spp. and that these bacteroids are terminally differentiated and polyploid, similar to bacteroids in IRLC legumes. Transcriptome, in situ hybridization, and proteome analyses demonstrated that the symbiotic cells in the Aeschynomene spp. nodules produce a large diversity of NCR-like peptides, which are transported to the bacteroids. Blocking NCR transport by RNA interference-mediated inactivation of the secretory pathway inhibits bacteroid differentiation. Together, our results support the view that bacteroid differentiation in the Dalbergioid clade, which likely evolved independently from the bacteroid differentiation in the IRLC clade, is based on very similar mechanisms used by IRLC legumes.


Molecular Plant-microbe Interactions | 2010

Large-Scale Transposon Mutagenesis of Photosynthetic Bradyrhizobium Sp. Strain ORS278 Reveals New Genetic Loci Putatively Important for Nod-Independent Symbiosis with Aeschynomene indica

Katia Bonaldi; Benjamin Gourion; Joël Fardoux; Laure Hannibal; Fabienne Cartieaux; Marc Boursot; David Vallenet; Clémence Chaintreuil; Yves Prin; Nico Nouwen; Eric Giraud

Photosynthetic Bradyrhizobium strains possess the unusual ability to form nitrogen-fixing nodules on a specific group of legumes in the absence of Nod factors. To obtain insight into the bacterial genes involved in this Nod-independent symbiosis, we screened 15,648 Tn5 mutants of Bradyrhizobium sp. strain ORS278 for clones affected in root symbiosis with Aeschynomene indica. From the 268 isolated mutants, 120 mutants were altered in nodule development (Ndv(-)) and 148 mutants were found to be deficient in nitrogen fixation (Fix(-)). More than 50% of the Ndv(-) mutants were found to be altered in purine biosynthesis, strengthening the previous hypothesis of a symbiotic role of a bacterial purine derivative during the Nod-independent symbiosis. The other Ndv(-) mutants were auxotrophic for pyrimidines and amino acids (leucine, glutamate, and lysine) or impaired in genes encoding proteins of unknown function. The Fix(-) mutants were found to be affected in a wide variety of cellular processes, including both novel (n = 56) and previously identified (n = 31) genes important in symbiosis. Among the novel genes identified, several were involved in the Calvin cycle, suggesting that CO(2) fixation could play an important role during this symbiosis.


Applied and Environmental Microbiology | 2007

Nickel resistance determinants in Bradyrhizobium strains from nodules of the endemic New Caledonia legume Serianthes calycina

Clémence Chaintreuil; Frédéric Rigault; Lionel Moulin; Tanguy Jaffré; Joël Fardoux; Eric Giraud; Bernard Dreyfus; Xavier Bailly

ABSTRACT Bradyrhizobium strains, isolated in New Caledonia from nodules of the endemic legume Serianthes calycina growing in nickel-rich soils, were able to grow in the presence of 15 mM NiCl2. The genomes of these strains harbored two Ni resistance determinants, the cnr and nre operons. By constructing a cnrA mutant, we demonstrated that the cnr operon determines the high nickel resistance in Bradyrhizobium strains.


Molecular Plant-microbe Interactions | 2013

Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes

Kateřina Podlešáková; Joël Fardoux; Delphine Patrel; Katia Bonaldi; Ondřej Novák; Miroslav Strnad; Eric Giraud; Lukáš Spíchal; Nico Nouwen

Cytokinins (CK) play an important role in the formation of nitrogen-fixing root nodules. It has been known for years that rhizobia secrete CK in the extracellular medium but whether they play a role in nodule formation is not known. We have examined this question using the photosynthetic Bradyrhizobium sp. strain ORS285 which is able to nodulate Aeschynomene afraspera and A. indica using a Nod-dependent or Nod-independent symbiotic process, respectively. CK profiling showed that the most abundant CK secreted by Bradyrhizobium sp. strain ORS285 are the 2MeS (2-methylthiol) derivatives of trans-zeatin and isopentenyladenine. In their pure form, these CK can activate legume CK receptors in vitro, and their exogenous addition induced nodule-like structures on host plants. Deletion of the miaA gene showed that transfer RNA degradation is the source of CK production in Bradyrhizobium sp. strain ORS285. In nodulation studies performed with A. indica and A. afraspera, the miaA mutant had a 1-day delay in nodulation and nitrogen fixation. Moreover, A. indica plants formed considerably smaller but more abundant nodules when inoculated with the miaA mutant. These data show that CK produced by Bradyrhizobium sp. strain ORS285 are not the key signal triggering nodule formation during the Nod-independent symbiosis but they contribute positively to nodule development in Aeschynomene plants.


Journal of Biological Chemistry | 2007

A Singular Bacteriophytochrome Acquired by Lateral Gene Transfer

Marianne Jaubert; Jérôme Lavergne; Joël Fardoux; Laure Hannibal; Laurie Vuillet; Jean-Marc Adriano; Pierre Bouyer; Eric Giraud; André Verméglio

Bacteriophytochromes are phytochrome-like proteins that mediate photosensory responses in various bacteria according to their light environment. The genome of the photosynthetic and plant-symbiotic Bradyrhizobium sp. strain ORS278 revealed the presence of a genomic island acquired by lateral transfer harboring a bacteriophytochrome gene, BrBphP3.ORS278, and genes involved in the synthesis of phycocyanobilin and gas vesicles. The corresponding protein BrBphP3.ORS278 is phylogenetically distant from the other (bacterio)phytochromes described thus far and displays a series of unusual properties. It binds phycocyanobilin as a chromophore, a unique feature for a bacteriophytochrome. Moreover, its C-terminal region is short and displays no homology with any known functional domain. Its dark-adapted state absorbs maximally around 610 nm, an unusually short wavelength for (bacterio)phytochromes. This form is designated as Po for orange-absorbing form. Upon illumination, a photo-reversible switch occurs between the Po form and a red (670 nm)-absorbing form (Pr), which rapidly backreacts in the dark. Because of this instability, illumination results in a mixture of the Po and Pr states in proportions that depend on the intensity. These uncommon features suggest that BrBphP3.ORS278 could be fitted to measure light intensity rather than color.


Molecular Plant-microbe Interactions | 2010

The Nod Factor–Independent Symbiotic Signaling Pathway: Development of Agrobacterium rhizogenes–Mediated Transformation for the Legume Aeschynomene indica

Katia Bonaldi; Hassen Gherbi; Claudine Franche; Géraldine Bastien; Joël Fardoux; David G. Barker; Eric Giraud; Fabienne Cartieaux

The nitrogen-fixing symbiosis between Aeschynomene indica and photosynthetic bradyrhizobia is the only legume-rhizobium association described to date that does not require lipochito-oligosaccharide Nod factors (NF). To assist in deciphering the molecular basis of this NF-independent interaction, we have developed a protocol for Agrobacterium rhizogenes-mediated transformation of A. indica. The cotransformation frequency (79%), the nodulation efficiency of transgenic roots (90%), and the expression pattern of the 35S Cauliflower mosaic virus promoter in transgenic nodules were all comparable to those obtained for model legumes. We have made use of this tool to monitor the heterologous spatio-temporal expression of the pMtENOD11-β-glucuronidase fusion, a widely used molecular reporter for rhizobial infection and nodulation in both legumes and actinorhizal plants. While MtENOD11 promoter activation was not observed in A. indica roots prior to nodulation, strong reporter-gene expression was observed in the invaded cells of young nodules and in the cell layers bordering the central zone of older nodules. We conclude that pMtENOD11 expression can be used as an infection-related marker in A. indica and that Agrobacterium rhizogenes-mediated root transformation of Aeschynomene spp. will be an invaluable tool for determining the molecular basis of the NF-independent symbiosis.

Collaboration


Dive into the Joël Fardoux's collaboration.

Top Co-Authors

Avatar

Eric Giraud

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Clémence Chaintreuil

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nico Nouwen

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Yves Prin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Katia Bonaldi

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Lionel Moulin

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Dreyfus

Arts et Métiers ParisTech

View shared research outputs
Researchain Logo
Decentralizing Knowledge