Joel Grotz
Astra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joel Grotz.
IEEE Communications Magazine | 2015
Sina Maleki; Symeon Chatzinotas; Barry G. Evans; Konstantinos Liolis; Joel Grotz; Alessandro Vanelli-Coralli; Nicolas Chuberre
Multibeam satellite networks in Ka band have been designed to accommodate the increasing traffic demands expected in the future. However, these systems are spectrum limited due to the current spectrum allocation policies. This paper investigates the potential of applying cognitive radio techniques in satellite communications (SatCom) in order to increase the spectrum opportunities for future generations of satellite networks without interfering with the operation of incumbent services. These extra spectrum opportunities can potentially amount to 2.4 GHz of bandwidth in the downlink and 2 GHz of bandwidth in the uplink for high density fixed satellite services (HDFSS).
Eurasip Journal on Wireless Communications and Networking | 2012
Dimitrios Christopoulos; Symeon Chatzinotas; Gan Zheng; Joel Grotz; Björn E. Ottersten
Existing satellite communication standards such as DVB-S2, operate under highly-efficient adaptive coding and modulation schemes thus making significant progress in improving the spectral efficiencies of digital satellite broadcast systems. However, the constantly increasing demand for broadband and interactive satellite links emanates the need to apply novel interference mitigation techniques, striving towards Terabit throughput. In this direction, the objective of the present contribution is to investigate joint multiuser processing techniques for multibeam satellite systems. In the forward link, the performance of linear precoding is investigated with optimal nonlinear precoding (i.e., dirty article coding) acting as the upper performance limit. To this end, the resulting power and precoder design problems are approached through optimization methods. Similarly, in the return link the concept of linear filtering (i.e., linear minimum mean square error) is studied with the optimal successive interference cancelation acting as the performance limit. The derived capacity curves for both scenarios are compared to conventional satellite systems where beams are processed independently and interbeam interference is mitigated through a four color frequency reuse scheme, in order to quantify the potential gain of the proposed techniques.
future network & mobile summit | 2013
Konstantinos Liolis; Gerald Schlueter; Jens Krause; Frank Zimmer; Laurent Combelles; Joel Grotz; Symeon Chatzinotas; Barry G. Evans; Alessandro Guidotti; Daniele Tarchi; Alessandro Vanelli-Coralli
This paper presents initial results of the recently kicked-off FP7 ICT STREP project “CoRaSat” (Cognitive Radio for Satellite Communications) [1]. Focus is put on the preliminary identification of the scenarios which are suitable for the applicability of Cognitive Radio technology over Satellite Communications (SatCom). The considered frequency bands include Ka-band, Ku-band, C-band and S-band, where regulatory and coordination constraints exist. An initial mapping of broadband and narrowband SatCom use cases on each identified scenario is also provided. Moreover, several challenges associated to the applicability of Cognitive Radio over SatCom in the identified scenarios are presented, which form the basis of the market/business, regulatory, standardization and technological framework of CoRaSat. Furthermore, ongoing and future work of the CoRaSat project is outlined.
International Journal of Satellite Communications and Networking | 2014
Jukka Kyröläinen; Ari Hulkkonen; Juha Ylitalo; Aaron Byman; Bhavani Shankar; Pantelis-Daniel M. Arapoglou; Joel Grotz
SUMMARY This paper presents achievements of an on-going activity where the applicability of MIMO to satellite communications with Digital Video Broadcasting – Satellite services to Handhelds as the key application is studied. The potential satellite and hybrid satellite-terrestrial MIMO scenarios are described, and the applicable MIMO schemes for each scenario are selected. The performance of the MIMO schemes was studied by performing comprehensive computer simulations, and the main results are presented in this paper. Copyright
30th AIAA International Communications Satellite Systems Conference (ICSSC), Ottawa, Canada, September 24-27, 2012 | 2012
Roberto Piazza; Bhavani Shankar; Efrain Zenteno; Daniel Rönnow; Joel Grotz; Frank Zimmer; Michael Grässlin; Heckmann F; Stefano Cioni
Two key advances are envisaged for future missions: (a) spectrally efficienttransmission to meet the increasing demand and (b) sharing of satellite capacityamong different links to meet power/mass requirements. Joint amplification ofmultiple-carrier DVB-S2 signals using a single High-Power Amplifier (HPA) is aparticular application of satellite resource sharing. However, effects specific to sucha scenario that degrade power and spectral efficiencies include (a) an increasedAdjacent Channel Interference caused by non-linear characteristic of the HPA and(b) increased peak to average power ratio. The paper studies signal processingtechniques – digital pre-distortion (DPD) at the gateway and equalization (EQ) atthe User Terminal – to mitigate the non-linear effects and improve power as well asspectral efficiencies. While the algorithms for DPD and EQ are described inliterature, their use in multi-carrier scenario is novel and poses new challenges thatare investigated in the paper.
IEEE Transactions on Wireless Communications | 2010
Joel Grotz; Björn E. Ottersten; Jens Krause
We address fixed satellite broadcast reception with the goal of decreasing the aperture of the receiving antenna. The front-end antenna size is commonly determined by the presence of interference from adjacent satellites. A small antenna aperture leads to interference from neighboring satellites utilizing the same frequency bands. We propose a reception system with M multiple input elements and with subsequent joint detection of desired and interfering signals that provides reliable communication in the presence of multiple interfering signals. An iterative least squares technique is adopted combining spatial and temporal processing and achieving robustness against pointing errors. Simulation results show how the proposed joint spatial and temporal adapted mechanism outperforms the simple combination of existing techniques under interference overloaded conditions. Also, we demonstrate how to accurately synchronize the signals as part of the detection procedure. The technique is evaluated in a realistic simulation study representing the conditions encountered in a DVB-S2 broadcast scenario.
IEEE Transactions on Wireless Communications | 2007
Joel Grotz; Björn E. Ottersten; Jens Krause
Spectral efficiency is of great concern in the return channel of satellite based broadband systems. In (Beidas, 2002) the feasibility of increased efficiency by reducing channel spacing below the symbol rate was demonstrated using joint detection and decoding for a synchronized system. We extend this work by addressing the critical synchronization problem in the presence of adjacent channel interference (ACI) which limits performance as carrier spacing is reduced. A pilot sequence aided joint synchronization scheme for a multi-frequency time division multiple access (MF-TDMA) system is proposed. Based on a maximum likelihood (ML) criterion, the channel parameters, including frequency, time and phase are jointly estimated for the channel of interest and the adjacent channels. The impact of ACI on the synchronization and detection performance is investigated. It is shown that joint channel parameter estimation outperforms single carrier synchronization with reasonable additional computational complexity in the receiver. Based on the proposed synchronization scheme in conjunction with an appropriate joint detection mechanism, see (Beidas, 2002), carrier spacing can be reduced significantly compared to current systems providing a substantial increase in spectral efficiency.
international conference on communications | 2015
Shree Krishna Sharma; Sina Maleki; Symeon Chatzinotas; Joel Grotz; Jens Krause; Björn E. Ottersten
Herein, we study the spectral coexistence of Geostationary (GEO) Fixed Satellite Services (FSS) downlink and Broadcasting Satellite Services (BSS) feeder links in the Ka-band (17.3 - 18.1 GHz) which is primarily allocated for BSS feeder links. Firstly, a novel cognitive spectrum exploitation framework is proposed in order to utilize the available band efficiently. Subsequently, based on the interference analysis carried out between these systems, two cognitive approaches, namely Carrier Allocation (CA) and Beamforming (BF), are investigated under the considered framework assuming the availability of an accurate Radio Environment Map (REM). The employed techniques allow the flexibility of using additional shared carriers for the FSS downlink system along with the already available exclusive carriers (19.7 - 20.2 GHz), thus increasing the overall system throughput. It is shown that a significant improvement in the per beam throughput as well as in the beam availability can be achieved by applying CA and BF approaches in the considered scenario.
2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC) | 2014
Shree Krishna Sharma; Sina Maleki; Symeon Chatzinotas; Joel Grotz; Björn E. Ottersten
The usable satellite spectrum has become scarce due to continuously increasing demand for broadband multimedia, broadcast and interactive services. In this context, investigating efficient spectrum coexistence techniques is a crucial challenge in order to enhance the spectral efficiency of future satellite systems. Herein, we study a satellite-terrestrial coexistence scenario where a Fixed Satellite Service (FSS) downlink coexists with the Fixed Service (FS) point to point microwave links in the Ka-band (17.7-19.7 GHz). First, we identify various practical challenges and provide possible solutions in order to allow this coexistence. Then we propose four different sensing and avoidance schemes in order to protect FSS satellite terminals from the harmful FS interference. Further, we evaluate the performance of one of the proposed solutions in the considered scenario with the help of theoretical and numerical analysis. More specifically, we focus on harmful FS detection problem in order to guarantee the sufficient protection of FSS terminals. It is shown that the FS harmful interference can be reliably detected with the help of an additional dipole antenna and this solution further overcomes the noise uncertainty problem encountered while sensing with the satellite dish.
social informatics | 2015
Eva Lagunas; Shree Krishna Sharma; Sina Maleki; Symeon Chatzinotas; Joel Grotz; Jens Krause; Björn E. Ottersten
This paper addresses the cognitive Geostationary Orbit (GSO) satellite uplink where satellite terminals reuse frequency bands of Fixed-Service (FS) terrestrial microwave links which are the incumbent users in the Ka 27.5-29.5 GHz band. In the scenario considered herein, the transmitted power of the cognitive satellite user has to ensure that the interference impact on potentially present FS links does not exceed the regulatory interference limitations. In order to satisfy the interference constraint and assuming the existence of a complete and reliable FS database, this paper proposes a Joint Power and Carrier Allocation (JPCA) strategy to enable the cognitive uplink access to GSO Fixed Satellite Service (FSS) terminals. The proposed approach identifies the worst FS link per user in terms of interference and divides the amount of tolerable interference among the maximum number of FSS terminal users that can potentially interfere with it. In so doing, the cognitive system is guaranteed to never exceed the prescribed interference threshold. Subsequently, powers and carriers are jointly allocated so as to maximize the throughput of the FSS system. Supporting results based on numerical simulations are provided. It is shown that the proposed cognitive approach represents a promising solution to significantly boost the performance of conventional satellite systems.