Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel Henderson is active.

Publication


Featured researches published by Joel Henderson.


Nature Immunology | 2008

Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes

Changchun Xiao; Lakshmi Srinivasan; Dinis Pedro Calado; Heide Christine Patterson; Baochun Zhang; Jing Wang; Joel Henderson; Jeffrey L. Kutok; Klaus Rajewsky

The genomic region encoding the miR-17-92 microRNA (miRNA) cluster is often amplified in lymphoma and other cancers, and cancer cells carrying this amplification have higher expression of miRNA in this cluster. Retroviral expression of miR-17-92 accelerates c-Myc-induced lymphoma development, but precisely how higher expression of miR-17-92 promotes lymphomagenesis remains unclear. Here we generated mice with higher expression of miR-17-92 in lymphocytes. These mice developed lymphoproliferative disease and autoimmunity and died prematurely. Lymphocytes from these mice showed more proliferation and less activation-induced cell death. The miR-17-92 miRNA suppressed expression of the tumor suppressor PTEN and the proapoptotic protein Bim. This mechanism probably contributed to the lymphoproliferative disease and autoimmunity of miR-17-92-transgenic mice and contributes to lymphoma development in patients with amplifications of the miR-17-92 coding region.


Nature Genetics | 2010

Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis

Elizabeth J. Brown; Johannes Schlöndorff; Daniel J. Becker; Hiroyasu Tsukaguchi; Stephen Tonna; Andrea L Uscinski; Henry N. Higgs; Joel Henderson; Martin R. Pollak

Focal segmental glomerulosclerosis (FSGS) is a pattern of kidney injury observed either as an idiopathic finding or as a consequence of underlying systemic conditions. Several genes have been identified that, when mutated, lead to inherited FSGS and/or the related nephrotic syndrome. These findings have accelerated the understanding of glomerular podocyte function and disease, motivating our search for additional FSGS genes. Using linkage analysis, we identified a locus for autosomal-dominant FSGS susceptibility on a region of chromosome 14q. By sequencing multiple genes in this region, we detected nine independent nonconservative missense mutations in INF2, which encodes a member of the formin family of actin-regulating proteins. These mutations, all within the diaphanous inhibitory domain of INF2, segregate with FSGS in 11 unrelated families and alter highly conserved amino acid residues. The observation that alterations in this podocyte-expressed formin cause FSGS emphasizes the importance of fine regulation of actin polymerization in podocyte function.


Cell Stem Cell | 2015

Perivascular Gli1+ Progenitors Are Key Contributors to Injury-Induced Organ Fibrosis

Rafael Kramann; Rebekka K. Schneider; Derek P. DiRocco; Flavia Machado; Susanne V. Fleig; Philip A. Bondzie; Joel Henderson; Benjamin L. Ebert; Benjamin D. Humphreys

Mesenchymal stem cells (MSCs) reside in the perivascular niche of many organs, including kidney, lung, liver, and heart, although their roles in these tissues are poorly understood. Here, we demonstrate that Gli1 marks perivascular MSC-like cells that substantially contribute to organ fibrosis. In vitro, Gli1(+) cells express typical MSC markers, exhibit trilineage differentiation capacity, and possess colony-forming activity, despite constituting a small fraction of the platelet-derived growth factor-β (PDGFRβ)(+) cell population. Genetic lineage tracing analysis demonstrates that tissue-resident, but not circulating, Gli1(+) cells proliferate after kidney, lung, liver, or heart injury to generate myofibroblasts. Genetic ablation of these cells substantially ameliorates kidney and heart fibrosis and preserves ejection fraction in a model of induced heart failure. These findings implicate perivascular Gli1(+) MSC-like cells as a major cellular origin of organ fibrosis and demonstrate that these cells may be a relevant therapeutic target to prevent solid organ dysfunction after injury.


Journal of Clinical Investigation | 2003

Mice deficient in α-actinin-4 have severe glomerular disease

Claudine H. Kos; Tu Cam Le; Sumita Sinha; Joel Henderson; Sung Han Kim; Hikaru Sugimoto; Raghu Kalluri; Robert E. Gerszten; Martin R. Pollak

Dominantly inherited mutations in ACTN4, which encodes α-actinin-4, cause a form of human focal and segmental glomerulosclerosis (FSGS). By homologous recombination in ES cells, we developed a mouse model deficient in Actn4. Mice homozygous for the targeted allele have no detectable α-actinin-4 protein expression. The number of homozygous mice observed was lower than expected under mendelian inheritance. Surviving mice homozygous for the targeted allele show progressive proteinuria, glomerular disease, and typically death by several months of age. Light microscopic analysis shows extensive glomerular disease and proteinaceous casts. Electron microscopic examination shows focal areas of podocyte foot-process effacement in young mice, and diffuse effacement and globally disrupted podocyte morphology in older mice. Despite the widespread distribution of α-actinin-4, histologic examination of mice showed abnormalities only in the kidneys. In contrast to the dominantly inherited human form of ACTN4-associated FSGS, here we show that the absence of α-actinin-4 causes a recessive form of disease in mice. Cell motility, as measured by lymphocyte chemotaxis assays, was increased in the absence of α-actinin-4. We conclude that α-actinin-4 is required for normal glomerular function. We further conclude that the nonsarcomeric forms of α-actinin (α-actinin-1 and α-actinin-4) are not functionally redundant. In addition, these genetic studies demonstrate that the nonsarcomeric α-actinin-4 is involved in the regulation of cell movement.


Journal of Clinical Investigation | 2007

Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease

Sanja Sever; Mehmet M. Altintas; Sharif R. Nankoe; Clemens C. Möller; David Ko; Changli Wei; Joel Henderson; Elizabetta C. del Re; Lianne Hsing; Ann H. Erickson; Clemens D. Cohen; Matthias Kretzler; Dontscho Kerjaschki; Alexander Y. Rudensky; Boris Nikolic; Jochen Reiser

Kidney podocytes and their foot processes maintain the ultrafiltration barrier and prevent urinary protein loss (proteinuria). Here we show that the GTPase dynamin is essential for podocyte function. During proteinuric kidney disease, induction of cytoplasmic cathepsin L leads to cleavage of dynamin at an evolutionary conserved site, resulting in reorganization of the podocyte actin cytoskeleton and proteinuria. Dynamin mutants that lack the cathepsin L site, or render the cathepsin L site inaccessible through dynamin self-assembly, are resistant to cathepsin L cleavage. When delivered into mice, these mutants restored podocyte function and resolve proteinuria. Our study identifies dynamin as a critical regulator of renal permselectivity that is specifically targeted by proteolysis under pathological conditions.


PLOS Biology | 2004

α-Actinin-4-Mediated FSGS: An Inherited Kidney Disease Caused by an Aggregated and Rapidly Degraded Cytoskeletal Protein

June Yao; Tu Cam Le; Claudine H. Kos; Joel Henderson; Phillip G Allen; Bradley M. Denker; Martin R. Pollak

Focal segmental glomerulosclerosis (FSGS) is a common pattern of renal injury, seen as both a primary disorder and as a consequence of underlying insults such as diabetes, HIV infection, and hypertension. Point mutations in theα-actinin-4 gene ACTN4 cause an autosomal dominant form of human FSGS. We characterized the biological effect of these mutations by biochemical assays, cell-based studies, and the development of a new mouse model. We found that a fraction of the mutant protein forms large aggregates with a high sedimentation coefficient. Localization of mutant α-actinin-4 in transfected and injected cells, as well as in situ glomeruli, showed aggregates of the mutant protein. Video microscopy showed the mutant α-actinin-4 to be markedly less dynamic than the wild-type protein. We developed a “knockin” mouse model by replacing Actn4 with a copy of the gene bearing an FSGS-associated point mutation. We used cells from these mice to show increased degradation of mutant α-actinin-4, mediated, at least in part, by the ubiquitin–proteasome pathway. We correlate these findings with studies of α-actinin-4 expression in human samples. “Knockin” mice with a disease-associated Actn4 mutation develop a phenotype similar to that observed in humans. Comparison of the phenotype in wild-type, heterozygous, and homozygous Actn4 “knockin” and “knockout” mice, together with our in vitro data, suggests that the phenotypes in mice and humans involve both gain-of-function and loss-of-function mechanisms.


Cancer | 2004

Gemcitabine-associated thrombotic microangiopathy

Benjamin D. Humphreys; Jeff P. Sharman; Joel Henderson; Jeffrey W. Clark; Peter W. Marks; Helmut G. Rennke; Andrew X. Zhu; Colm Magee

Gemcitabine‐associated thrombotic microangiopathy (TMA) is believed to be very rare, with an estimated incidence rate of 0.015%. Indications for gemcitabine are expanding, and comprehensive characterization of this complication is therefore important.


Journal of Clinical Investigation | 2013

Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis

Benjamin D. Humphreys; Fengfeng Xu; Venkata Sabbisetti; Ivica Grgic; Said Movahedi Naini; Ningning Wang; Guochun Chen; Sheng Xiao; Dhruti Patel; Joel Henderson; Takaharu Ichimura; Shan Mou; Savuth Soeung; Andrew P. McMahon; Vijay K. Kuchroo; Joseph V. Bonventre

Acute kidney injury predisposes patients to the development of both chronic kidney disease and end-stage renal failure, but the molecular details underlying this important clinical association remain obscure. We report that kidney injury molecule-1 (KIM-1), an epithelial phosphatidylserine receptor expressed transiently after acute injury and chronically in fibrotic renal disease, promotes kidney fibrosis. Conditional expression of KIM-1 in renal epithelial cells (Kim1(RECtg)) in the absence of an injury stimulus resulted in focal epithelial vacuolization at birth, but otherwise normal tubule histology and kidney function. By 4 weeks of age, Kim1(RECtg) mice developed spontaneous and progressive interstitial kidney inflammation with fibrosis, leading to renal failure with anemia, proteinuria, hyperphosphatemia, hypertension, cardiac hypertrophy, and death, analogous to progressive kidney disease in humans. Kim1(RECtg) kidneys had elevated expression of proinflammatory monocyte chemotactic protein-1 (MCP-1) at early time points. Heterologous expression of KIM-1 in an immortalized proximal tubule cell line triggered MCP-1 secretion and increased MCP-1-dependent macrophage chemotaxis. In mice expressing a mutant, truncated KIM-1 polypeptide, experimental kidney fibrosis was ameliorated with reduced levels of MCP-1, consistent with a profibrotic role for native KIM-1. Thus, sustained KIM-1 expression promotes kidney fibrosis and provides a link between acute and recurrent injury with progressive chronic kidney disease.


American Journal of Physiology-cell Physiology | 2011

Biophysical properties of normal and diseased renal glomeruli

Hans M. Wyss; Joel Henderson; Fitzroy J. Byfield; Leslie A. Bruggeman; Yaxian Ding; Chunfa Huang; Jung Hee Suh; Thomas Franke; Elisa Mele; Martin R. Pollak; Jeffrey H. Miner; Paul A. Janmey; David A. Weitz; R. Tyler Miller

The mechanical properties of tissues and cells including renal glomeruli are important determinants of their differentiated state, function, and responses to injury but are not well characterized or understood. Understanding glomerular mechanics is important for understanding renal diseases attributable to abnormal expression or assembly of structural proteins and abnormal hemodynamics. We use atomic force microscopy (AFM) and a new technique, capillary micromechanics, to measure the elastic properties of rat glomeruli. The Youngs modulus of glomeruli was 2,500 Pa, and it was reduced to 1,100 Pa by cytochalasin and latunculin, and to 1,400 Pa by blebbistatin. Cytochalasin or latrunculin reduced the F/G actin ratios of glomeruli but did not disrupt their architecture. To assess glomerular biomechanics in disease, we measured the Youngs moduli of glomeruli from two mouse models of primary glomerular disease, Col4a3(-/-) mice (Alport model) and Tg26(HIV/nl) mice (HIV-associated nephropathy model), at stages where glomerular injury was minimal by histopathology. Col4a3(-/-) mice express abnormal glomerular basement membrane proteins, and Tg26(HIV/nl) mouse podocytes have multiple abnormalities in morphology, adhesion, and cytoskeletal structure. In both models, the Youngs modulus of the glomeruli was reduced by 30%. We find that glomeruli have specific and quantifiable biomechanical properties that are dependent on the state of the actin cytoskeleton and nonmuscle myosins. These properties may be altered early in disease and represent an important early component of disease. This increased deformability of glomeruli could directly contribute to disease by permitting increased distension with hemodynamic force or represent a mechanically inhospitable environment for glomerular cells.


Journal of Immunology | 2006

Novel Insights into the Mechanism of Action of FTY720 in a Transgenic Model of Allograft Rejection: Implications for Therapy of Chronic Rejection

Antje Habicht; Michael R. Clarkson; Jun Yang; Joel Henderson; Volker Brinkmann; Stacey Fernandes; Mollie Jurewicz; Xueli Yuan; Mohamed H. Sayegh

FTY720 is a high-affinity agonist at the sphingosine 1-phosphate receptor 1 that prevents lymphocyte egress from lymphoid tissue and prolongs allograft survival in several animal models of solid organ transplantation. In this study we used a recently developed adoptive transfer model of TCR transgenic T cells to track allospecific CD4+ T cell expansion and trafficking characteristics, cytokine secretion profiles, and surface phenotype in vivo in the setting of FTY720 administration. We report that FTY720 administration had no effect on alloantigen-driven T cell activation, proliferation, acquisition of effector-memory function, or T cell apoptosis. However, FTY720 caused a reversible sequestration of alloantigen-specific effector-memory T cells in regional lymphoid tissue associated with a decrease in T cell infiltration within the allograft and a subsequent prolongation in allograft survival. Furthermore, delayed administration of FTY720 in a cardiac model of chronic allograft rejection attenuated the progression of vasculopathy and tissue fibrosis consistent with the hypothesis that FTY720 interrupts the trafficking of activated effector-memory T cells. These data have important implications for targeting the sphingosine 1-phosphate receptor 1 in solid organ transplantation.

Collaboration


Dive into the Joel Henderson's collaboration.

Top Co-Authors

Avatar

Martin R. Pollak

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrea L Uscinski

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Benjamin D. Humphreys

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Schlöndorff

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie A. Bruggeman

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Paul A. Janmey

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Klaus Rajewsky

Max Delbrück Center for Molecular Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge