Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel J. Ducoste is active.

Publication


Featured researches published by Joel J. Ducoste.


Journal of Colloid and Interface Science | 2003

Characterizing flocculation under heterogeneous turbulence

D.Cory Hopkins; Joel J. Ducoste

This study investigated the impact of turbulent heterogeneity in a flocculation reactor on particle aggregation and breakup. In particular, the influence of average characteristic velocity gradient (G), particle concentration, and coagulation mechanism (sweep floc vs charge neutralization) on the floc growth, steady-state size, and variance was analyzed. Experiments were performed in a bench-scale reactor with a low-shear axial-flow impeller using a photometric dispersion analyzer (PDA). Results indicated that as G increased, floc growth increased while the mean size and variance in the floc size distribution decreased. In addition, floc growth, mean size, and variance increased with increasing primary particle concentration and when the coagulation mechanism was switched from charge neutralization to sweep floc. Lastly, floc growth, mean size, and variance were found to vary spatially in the reactor at low G values with larger floc size and growth rate in the bulk region and a larger variance in the impeller discharge region.


The Plant Cell | 2014

Complete Proteomic-Based Enzyme Reaction and Inhibition Kinetics Reveal How Monolignol Biosynthetic Enzyme Families Affect Metabolic Flux and Lignin in Populus trichocarpa

Jack P. Wang; Punith P. Naik; Hsi-Chuan Chen; Rui Shi; Chien-Yuan Lin; Jie Liu; Christopher M. Shuford; Quanzi Li; Ying-Hsuan Sun; Cranos Williams; David C. Muddiman; Joel J. Ducoste; Ronald R. Sederoff; Vincent L. Chiang

A proteomic-based predictive kinetic metabolic-flux model was developed for monolignol biosynthesis in Populus trichocarpa. Absolute quantities of all monolignol pathway proteins and 189 kinetic parameters were generated to construct the model, which was experimentally validated in transgenic P. trichocarpa and provides a comprehensive description of the monolignol biosynthetic pathway. We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants.


Environmental Science & Technology | 2011

Evidence for Fat, Oil, and Grease (FOG) Deposit Formation Mechanisms in Sewer Lines

Xia He; Mahbuba Iasmin; Lisa O. Dean; Simon E. Lappi; Joel J. Ducoste; Francis L. de los Reyes

The presence of hardened and insoluble fats, oil, and grease (FOG) deposits in sewer lines is a major cause of line blockages leading to sanitary sewer overflows (SSOs). Despite the central role that FOG deposits play in SSOs, little is known about the mechanisms of FOG deposit formation in sanitary sewers. In this study, FOG deposits were formed under laboratory conditions from the reaction between free fatty acids and calcium chloride. The calcium and fatty acid profile analysis showed that the laboratory-produced FOG deposit displayed similar characteristics to FOG deposits collected from sanitary sewer lines. Results of FTIR analysis showed that the FOG deposits are metallic salts of fatty acid as revealed by comparisons with FOG deposits collected from sewer lines and pure calcium soaps. Based on the data, we propose that the formation of FOG deposits occurs from the aggregation of excess calcium compressing the double layer of free fatty acid micelles and a saponification reaction between aggregated calcium and free fatty acids.


Water Research | 2011

Microbial UV fluence-response assessment using a novel UV-LED collimated beam system

Colleen Bowker; Amanda Sain; Max Shatalov; Joel J. Ducoste

A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms.


Water Research | 2013

Mechanisms of Fat, Oil and Grease (FOG) deposit formation in sewer lines

Xia He; Francis L. de los Reyes; Michael L. Leming; Lisa O. Dean; Simon E. Lappi; Joel J. Ducoste

FOG deposits in sewer systems have recently been shown to be metallic salts of fatty acids. However, the fate and transport of FOG deposit reactant constituents and the complex interactions during the FOG deposit formation process are still largely unknown. In this study, batch tests were performed to elucidate the mechanisms of FOG deposit formation that lead to sanitary sewer overflows (SSOs). We report the first formation of FOG deposits on a concrete surface under laboratory conditions that mimic the formation of deposits in sewer systems. Results showed that calcium, the dominant metal in FOG deposits, can be released from concrete surfaces under low pH conditions and contribute to the formation process. Small amounts of additional oil to grease interceptor effluent substantially facilitated the air/water or pipe surface/water interfacial reaction between free fatty acids and calcium to produce surface FOG deposits. Tests of different fatty acids revealed that more viscous FOG deposit solids were formed on concrete surfaces, and concrete corrosion was accelerated, in the presence of unsaturated FFAs versus saturated FFAs. Based on all the data, a comprehensive model was proposed for the mechanisms of FOG deposit formation in sewer systems.


Water Research | 2010

Modeling the UV/hydrogen peroxide advanced oxidation process using computational fluid dynamics.

Scott M. Alpert; Detlef R.U. Knappe; Joel J. Ducoste

The use of numerical models for the design and optimization of UV/H(2)O(2) systems must incorporate both reactor design (hydrodynamics, lamp orientation) and chemical kinetics (reaction mechanisms, kinetic rate constants). This study was conducted to evaluate the performance of comprehensive CFD/UV/AOP models for the degradation of an indicator organic contaminant. The combination of turbulence sub-models, fluence rate sub-models, and kinetic rate equations resulted in a comprehensive and flexible design tool for predicting the effluent chemical composition from a UV-initiated AOP reactor. The CFD model tended to under predict the percent removal of methylene blue compared to pilot reactor trials under the same operating conditions. In addition, the percent difference between the pilot and the CFD results increased with increasing flow rates. The MSSS fluence rate sub-model predicted higher contaminant removal values than the RAD-LSI sub-model while the different two-equation turbulence sub-models did not significantly impact the predicted removal for methylene blue in the tested reactor configuration. The overall degradation of methylene blue was a strong function of the second-order kinetic rate constant describing the reaction between methylene blue and the hydroxyl radical. In addition, the removal of methylene blue was sensitive to the concentration of dissolved organic carbon in the water matrix since DOC acts as a scavenger of hydroxyl radicals.


Chemical Engineering Science | 2002

A two-scale PBM for modeling turbulent flocculation in water treatment processes

Joel J. Ducoste

Abstract A population balance model (PBM) that incorporates two scales of turbulent motion in the breakup frequency function has been presented. The breakup frequency function is designed such that particles smaller than the impeller-region Kolmogoroff microscale will erode according to a critical velocity related to the local energy dissipation rate. Particles larger than the impeller-region Kolmogoroff microscale will fracture according to a critical velocity related to the impeller tip speed. The two-scale model was found to better predict the experimental steady-state particle size distribution in 5, 28, and 560 l tank sizes and with a Rushton turbine and A310 fluid foil impellers. The two-scale PBM was also used to investigate the most appropriate scale-up law for drinking water flocculation processes. In addition, the impact of higher tank average energy dissipation rate, primary particle concentration, and coagulant concentration on the volume mean particle size with increasing tank size and different impeller types was also presented.


Environmental Science & Technology | 2010

Modeling hydroxyl radical distribution and trialkyl phosphates oxidation in UV-H2O2 photoreactors using computational fluid dynamics.

Domenico Santoro; Mehrdad Raisee; Mostafa Moghaddami; Joel J. Ducoste; Micheal Sasges; Lorenzo Liberti; Michele Notarnicola

Advanced Oxidation Processes (AOPs) promoted by ultraviolet light are innovative and potentially cost-effective solutions for treating persistent pollutants recalcitrant to conventional water and wastewater treatment. While several studies have been performed during the past decade to improve the fundamental understanding of the UV-H(2)O(2) AOP and its kinetic modeling, Computational Fluid Dynamics (CFD) has only recently emerged as a powerful tool that allows a deeper understanding of complex photochemical processes in environmental and reactor engineering applications. In this paper, a comprehensive kinetic model of UV-H(2)O(2) AOP was coupled with the Reynolds averaged Navier-Stokes (RANS) equations using CFD to predict the oxidation of tributyl phosphate (TBP) and tri(2-chloroethtyl) phosphate (TCEP) in two different photoreactors: a parallel- and a cross-flow UV device employing a UV lamp emitting primarily 253.7 nm radiation. CFD simulations, obtained for both turbulent and laminar flow regimes and compared with experimental data over a wide range of UV doses, enabled the spatial visualization of hydrogen peroxide and hydroxyl radical distributions in the photoreactor. The annular photoreactor displayed consistently better oxidation performance than the cross-flow system due to the absence of recirculation zones, as confirmed by the hydroxyl radical dose distributions. Notably, such discrepancy was found to be strongly dependent on and directly correlated with the hydroxyl radical rate constant becoming relevant for conditions approaching diffusion-controlled reaction regimes (k(C,OH) > 10(9) M(-1) s(-1)).


The Plant Cell | 2014

Systems Biology of Lignin Biosynthesis in Populus trichocarpa: Heteromeric 4-Coumaric Acid:Coenzyme A Ligase Protein Complex Formation, Regulation, and Numerical Modeling

Hsi-Chuan Chen; Jina Song; Jack P. Wang; Ying-Chung Lin; Joel J. Ducoste; Christopher M. Shuford; Jie Liu; Quanzi Li; Rui Shi; Angelito I. Nepomuceno; Fikret Isik; David C. Muddiman; Cranos Williams; Ronald R. Sederoff; Vincent L. Chiang

This work shows that 4CL, an enzyme in monolignol biosynthesis, is found as a heterotetrameric complex of two isoforms in Populus trichocarpa. The activity of the heterotetramer can be described by a mathematical model that explains the effects of each isoform with mixtures of substrates and three types of inhibition, providing insights into the regulation of metabolic flux for this pathway. As a step toward predictive modeling of flux through the pathway of monolignol biosynthesis in stem differentiating xylem of Populus trichocarpa, we discovered that the two 4-coumaric acid:CoA ligase (4CL) isoforms, 4CL3 and 4CL5, interact in vivo and in vitro to form a heterotetrameric protein complex. This conclusion is based on laser microdissection, coimmunoprecipitation, chemical cross-linking, bimolecular fluorescence complementation, and mass spectrometry. The tetramer is composed of three subunits of 4CL3 and one of 4CL5. 4CL5 appears to have a regulatory role. This protein–protein interaction affects the direction and rate of metabolic flux for monolignol biosynthesis in P. trichocarpa. A mathematical model was developed for the behavior of 4CL3 and 4CL5 individually and in mixtures that form the enzyme complex. The model incorporates effects of mixtures of multiple hydroxycinnamic acid substrates, competitive inhibition, uncompetitive inhibition, and self-inhibition, along with characteristic of the substrates, the enzyme isoforms, and the tetrameric complex. Kinetic analysis of different ratios of the enzyme isoforms shows both inhibition and activation components, which are explained by the mathematical model and provide insight into the regulation of metabolic flux for monolignol biosynthesis by protein complex formation.


Plant Physiology | 2013

Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus. trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes

Hsi-Chuan Chen; Jina Song; Cranos Williams; Christopher M. Shuford; Jie Liu; Jack P. Wang; Quanzi Li; Rui Shi; Emine Gokce; Joel J. Ducoste; David C. Muddiman; Ronald R. Sederoff; Vincent L. Chiang

Two 4-coumaric acid:CoA ligases regulate CoA flux with novel specificity. 4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stem-differentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis.

Collaboration


Dive into the Joel J. Ducoste's collaboration.

Top Co-Authors

Avatar

Francis L. de los Reyes

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Karl G. Linden

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Cranos Williams

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Lisa O. Dean

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Tarek N. Aziz

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Jack P. Wang

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Liu

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Jie Liu

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge