Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel Knoery is active.

Publication


Featured researches published by Joel Knoery.


Atmospheric Chemistry and Physics | 2016

Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

Francesca Sprovieri; Nicola Pirrone; Mariantonia Bencardino; Francesco D'Amore; Francesco Carbone; Sergio Cinnirella; Valentino Mannarino; Matthew S. Landis; Ralf Ebinghaus; Andreas Weigelt; E.-G. Brunke; Casper Labuschagne; Lynwill Martin; John Munthe; Ingvar Wängberg; Paulo Artaxo; Fernando Morais; Henrique M. J. Barbosa; Joel Brito; Warren Raymond Lee Cairns; Carlo Barbante; María del Carmen Diéguez; Patricia Elizabeth Garcia; Aurélien Dommergue; Hélène Angot; Olivier Magand; Henrik Skov; Milena Horvat; Jože Kotnik; K. A. Read

Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.


Science of The Total Environment | 2014

Mercury in organisms from the Northwestern Mediterranean slope: Importance of food sources

Pierre Cresson; Marie Claire Fabri; Marc Bouchoucha; C. Brach Papa; Fabienne Chavanon; A. Jadaud; Joel Knoery; F. Miralles; Daniel Cossa

Mercury (Hg) is a global threat for marine ecosystems, especially within the Mediterranean Sea. The concern is higher for deep-sea organisms, as the Hg concentration in their tissues is commonly high. To assess the influence of food supply at two trophic levels, total Hg concentrations and carbon and nitrogen stable isotope ratios were determined in 7 species (4 teleosts, 2 sharks, and 1 crustacean) sampled on the upper part of the continental slope of the Gulf of Lions (Northwestern Mediterranean Sea), at depths between 284 and 816 m. Mean Hg concentrations ranged from 1.30±0.61 to 7.13±7.09 μg g(-1) dry mass, with maximum values observed for small-spotted catshark Scyliorhinus canicula. For all species except blue whiting Micromesistius poutassou, Hg concentrations were above the health safety limits for human consumption defined by the European Commission, with a variable proportion of the individuals exceeding limits (from 23% for the Norway lobster Nephrops norvegicus to 82% for the blackbelly rosefish Helicolenus dactylopterus). Measured concentrations increased with increasing trophic levels. Carbon isotopic ratios measured for these organisms demonstrated that settling phytoplanktonic organic matter is not only the main source fueling trophic webs but also the carrier of Hg to this habitat. Inter- and intraspecific variations of Hg concentrations revealed the importance of feeding patterns in Hg bioaccumulation. In addition, biological parameters, such as growth rate or bathymetric range explain the observed contamination trends.


Talanta | 2017

3D-printed flow system for determination of lead in natural waters

Elodie Mattio; Fabien Robert-Peillard; Catherine Branger; Kinga Puzio; André Margaillan; Christophe Brach-Papa; Joel Knoery; Jean Luc Boudenne; Bruno Coulomb

The development of 3D printing in recent years opens up a vast array of possibilities in the field of flow analysis. In the present study, a new 3D-printed flow system has been developed for the selective spectrophotometric determination of lead in natural waters. This system was composed of three 3D-printed units (sample treatment, mixing coil and detection) that might have been assembled without any tubing to form a complete flow system. Lead was determined in a two-step procedure. A preconcentration of lead was first carried out on TrisKem Pb Resin located in a 3D-printed column reservoir closed by a tapped screw. This resin showed a high extraction selectivity for lead over many tested potential interfering metals. In a second step, lead was eluted by ammonium oxalate in presence of 4-(2-pyridylazo)-resorcinol (PAR), and spectrophotometrically detected at 520nm. The optimized flow system has exhibited a linear response from 3 to 120µgL-1. Detection limit, coefficient of variation and sampling rate were evaluated at 2.7µgL-1, 5.4% (n=6) and 4 sampleh-1, respectively. This flow system stands out by its fully 3D design, portability and simplicity for low cost analysis of lead in natural waters.


Talanta | 2018

3D-printed lab-on-valve for fluorescent determination of cadmium and lead in water

Elodie Mattio; Fabien Robert-Peillard; Laurent Vassalo; Catherine Branger; André Margaillan; Christophe Brach-Papa; Joel Knoery; Jean-Luc Boudenne; Bruno Coulomb

In recent years, the development of 3D printing in flow analysis has allowed the creation of new systems with various applications. Up to now, 3D printing was mainly used for the manufacture of small units such as flow detection cells, preconcentration units or mixing systems. In the present study, a new 3D printed lab-on-valve system was developed to selectively quantify lead and cadmium in water. Different technologies were compared for lab-on-valve 3D printing. Printed test units have shown that stereolithography or digital light processing are satisfactory techniques for creating complex lab-on-valve units. The lab-on-valve system was composed of two columns, eight peripheral ports and a central port, and a coil integrating baffles to increase mixing possibilities. A selective extraction of lead was first carried out by TrisKem Pb™ Resin column. Then, cadmium not retained on the first column was extracted on a second column of Amberlite® IR 120 resin. In a following step, lead and cadmium were eluted with ammonium oxalate and potassium iodide, respectively. Finally, the two metals were sequentially detected by the same Rhod-5N™ fluorescent reagent. This 3D printed lab-on-valve flow system allowed us to quantify lead and cadmium with a linear response from 0.2 to 15 µg L-1 and detection limits of 0.17 and 0.20 µg L-1 for lead and cadmium, respectively, which seems adapted for natural water analysis.


Marine Pollution Bulletin | 2017

Spatial and temporal distribution of mercury and methylmercury in bivalves from the French coastline

Nicolas Briant; Tiphaine Chouvelon; Laura Martinez; Christophe Brach-Papa; Jean-Francois Chiffoleau; Nicolas Savoye; Jeroen E. Sonke; Joel Knoery

Marine mercury (Hg) concentrations have been monitored in the French coastline for the last half a century using bivalves. The analyses presented in this study concerned 192 samples of bivalves (mussels: Mytilus edulis and Mytilus galloprovincialis and oysters: Crassostrea gigas and Isognomon alatus) from 77 sampling stations along the French coast and in the French Antilles sea. The goals of this study were to assess MeHg levels in various common bivalves from French coastline, and to identify possible geographic, taxonomic or temporal variations of concentrations. We show that the evolution of methylmercury (MeHg) concentrations covary with total mercury (HgT) concentrations. Moreover, in most of the study sites, HgT concentrations have not decreased since 1987, despite regulations to decrease or ban mercury used for anthropic activities.


Science of The Total Environment | 2018

Carbon and nitrogen elemental and isotopic ratios of filter-feeding bivalves along the French coasts: An assessment of specific, geographic, seasonal and multi-decadal variations

Nicolas Briant; Nicolas Savoye; Tiphaine Chouvelon; Valérie David; Samuel Rodriguez; Karine Charlier; Jeroen E. Sonke; Jean François Chiffoleau; Christophe Brach-Papa; Joel Knoery

Primary consumers play a key role in coastal ecosystems by transferring organic matter from primary producers to predators. Among them, suspension-feeders, like bivalve molluscs are widely used in trophic web studies. The main goal of this study was to investigate variations of C and N elemental and isotopic ratios in common bivalves (M. edulis, M. galloprovincialis, and C. gigas) at large spatial (i.e. among three coastal regions) and different temporal (i.e. from seasonal to multi-decadal) scales in France, in order to identify potential general or specific patterns and speculate on their drivers. The observed spatial variability was related to the trophic status of the coastal regions (oligotrophic Mediterranean Sea versus meso- to eutrophic English Channel and Atlantic ocean), but not to ecosystem typology (estuaries, versus lagoons versus bays versus littoral systems). Furthermore, it highlighted local specificities in terms of the origin of the POM assimilated by bivalves (e.g., mainly continental POM vs. marine phytoplankton vs. microphytobenthic algae). Likewise, seasonal variability was related both to the reproduction cycle for C/N ratios of Mytilus spp. and to changes in trophic resources for δ13C of species located close to river mouth. Multi-decadal evolution exhibited shifts and trends for part of the 30-year series with decreases in δ13C and δ15N. Specifically, shifts appeared in the early 2000s, likely linking bivalve isotopic ratios to a cascade of processes affected by local drivers.


Environmental Pollution | 2018

Oligotrophy as a major driver of mercury bioaccumulation in medium-to high-trophic level consumers: A marine ecosystem-comparative study

Tiphaine Chouvelon; Pierre Cresson; Marc Bouchoucha; Christophe Brach-Papa; Paco Bustamante; Sylvette Crochet; Françoise Marco-Miralles; Bastien Thomas; Joel Knoery

Mercury (Hg) is a global contaminant of environmental concern. Numerous factors influencing its bioaccumulation in marine organisms have already been described at both individual and species levels (e.g., size or age, habitat, trophic level). However, few studies have compared the trophic characteristics of ecosystems to explain underlying mechanisms of differences in Hg bioaccumulation and biomagnification among food webs and systems. The present study aimed at investigating the potential primary role of the trophic status of systems on Hg bioaccumulation and biomagnification in temperate marine food webs, as shown by their medium-to high-trophic level consumers. It used data from samples collected at the shelf-edge (i.e. offshore organisms) in two contrasted ecosystems: the Bay of Biscay in the North-East Atlantic Ocean and the Gulf of Lion in the North-West Mediterranean Sea. Seven species including crustaceans, sharks and teleost fish, previously analysed for their total mercury (T-Hg) concentrations and their stable carbon and nitrogen isotope compositions, were considered for a meta-analysis. In addition, methylated mercury forms (or methyl-mercury, Me-Hg) were analysed. Mediterranean organisms presented systematically lower sizes than Atlantic ones, and lower δ13C and δ15N values, the latter values especially highlighting the more oligotrophic character of Mediterranean waters. Mediterranean individuals also showed significantly higher T-Hg and Me-Hg concentrations. Conversely, Me-Hg/T-Hg ratios were higher than 85% for all species, and quite similar between systems. Finally, the biomagnification power of Hg was different between systems when considering T-Hg, but not when considering Me-Hg, and was not different between the Hg forms within a given system. Overall, the different parameters showed the crucial role of the low primary productivity and its effects rippling through the compared ecosystems in the higher Hg bioaccumulation seen in organisms from oligotrophic Mediterranean waters.


Frontiers in Marine Science | 2018

Modeling the Influence of Eutrophication and Redox Conditions on Mercury Cycling at the Sediment-Water Interface in the Berre Lagoon

Svetlana V. Pakhomova; Evgeniy Yakushev; Elizaveta Protsenko; Sylvain Rigaud; Daniel Cossa; Joel Knoery; Raoul-Marie Couture; Olivier Radakovitch; Shamil Yakubov; Dominika Krzeminska; Alice Newton

This study presents a specifically designed Mercury module in a coupled benthic-pelagic reactive-transport model - Bottom RedOx Model (BROM) that allows to study mercury (Hg) biogeochemistry under different conditions. This module considers the transformation of elemental mercury (Hg(0)), divalent mercury (Hg(II)) and methylmercury (MeHg). The behavior of mercury species in the model is interconnected with changes of oxygen, hydrogen sulphide, iron oxides, organic matter and biota. We simulated the transformation and transport of Hg species in the water column and upper sediment layer under five different scenarios, combining various levels of oxygenation and trophic state in the Berre lagoon, a shallow eutrophic lagoon of the French Mediterranean coast subjected to seasonal anoxia. The first scenario represents the conditions in the lagoon that are compared with experimental data. The four other scenarios were produced by varying the biological productivity, using low and high nutrient (N and P) concentrations, and by varying the redox conditions using different intensity of vertical mixing in the water column. The results of the simulation show that both oxidized and reduced sediments can accumulate Hg, but any shifts in redox conditions in bottom water and upper sediment layer lead to the release of Hg species into the water column. Eutrophication and/or restricted vertical mixing lead to reducing conditions and intensify MeHg formation in the sediment with periodic release to the water column. Oxygenation of an anoxic water body can lead to the appearance of Hg species in the water column and uptake by organisms, whereby Hg may enter into the food web. The comparison of studied scenarios shows that a well-oxygenated eutrophic system favors the conditions for Hg species bioaccumulation with a potential adverse effect on the ecosystem. The research is relevant to the UN Minimata convention, EU policies on water, environmental quality standards and Mercury in particular.


Chemical Geology | 2004

Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo–Angola Basin

Jean-Luc Charlou; Jean-Pierre Donval; Yves Fouquet; Hélène Ondréas; Joel Knoery; P. Cochonat; D. Levaché; Y. Poirier; Philippe Jean-Baptiste; E. Fourré; B. Chazallon


Deep-sea Research Part I-oceanographic Research Papers | 2010

Heat, volume and chemical fluxes from submarine venting: A synthesis of results from the Rainbow hydrothermal field, 36°N MAR

C. R. German; Andreas M. Thurnherr; Joel Knoery; Jean-Luc Charlou; Philippe Jean-Baptiste; H. N. Edmonds

Collaboration


Dive into the Joel Knoery's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elodie Mattio

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge