Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joël Lemaire is active.

Publication


Featured researches published by Joël Lemaire.


The Astrophysical Journal | 2009

EXPERIMENTAL EVIDENCE FOR WATER FORMATION VIA OZONE HYDROGENATION ON DUST GRAINS AT 10 K

H. Mokrane; H. Chaabouni; M. Accolla; E. Congiu; F. Dulieu; M. Chehrouri; Joël Lemaire

The formation of water molecules from the reaction between ozone (O3) and D-atoms is studied experimentally for the first time. Ozone is deposited on non-porous amorphous solid water ice (H2O), and D-atoms are then sent onto the sample held at 10 K. HDO molecules are detected during the desorption of the whole substrate where isotope mixing takes place, indicating that water synthesis has occurred. The efficiency of water formation via hydrogenation of ozone is of the same order of magnitude as that found for reactions involving O-atoms or O2 molecules and exhibits no apparent activation barrier. These experiments validate the assumption made by models using ozone as one of the precursors of water formation via solid-state chemistry on interstellar dust grains.


Physical Chemistry Chemical Physics | 2007

Resonant infrared multiphoton dissociation spectroscopy of gas-phase protonated peptides. Experiments and Car–Parrinello dynamics at 300 K

Gilles Grégoire; Marie-Pierre Gaigeot; D. C. Marinica; Joël Lemaire; Jean-Pierre Schermann; C. Desfrançois

The gas-phase structures of protonated peptides are studied by means of resonant infrared multiphoton dissociation spectroscopy (R-IRMPD) performed with a free electron laser. The peptide structures and protonation sites are obtained through comparison between experimental IR spectra and their prediction from quantum chemistry calculations. Two different analyses are conducted. It is first supposed that only well-defined conformations, sufficiently populated according to a Boltzmann distribution, contribute to the observed spectra. On the contrary, DFT-based Car-Parrinello molecular dynamics simulations show that at 300 K protonated peptides no longer possess well-defined structures, but rather dynamically explore the set of conformations considered in the first conventional approach.


Journal of Chemical Physics | 2007

Interaction of atomic and molecular deuterium with a nonporous amorphous water ice surface between 8 and 30K

L. Amiaud; F. Dulieu; J.-H. Fillion; A. Momeni; Joël Lemaire

Molecular and atomic interactions of hydrogen on dust grains covered with ice at low temperatures are key mechanisms for star formation and chemistry in dark interstellar clouds. We have experimentally studied the interaction of atomic and molecular deuterium on nonporous amorphous water ice surfaces between 8 and 30 K, in conditions compatible with an extrapolation to an astrophysical context. The adsorption energy of D(2) presents a wide distribution, as already observed on porous water ice surfaces. At low coverage, the sticking coefficient of D(2) increases linearly with the number of deuterium molecules already adsorbed on the surface. Recombination of atomic D occurs via a prompt reaction that releases molecules into the gas phase. Part of the newly formed molecules are in vibrationally excited states (v=1-7). The atomic recombination efficiency increases with the presence of D(2) molecules already adsorbed on the water ice, probably because these increase the sticking coefficient of the atoms, as in the case of incident D(2). We have measured the atomic recombination efficiency in the presence of already absorbed D(2), as it is expected to occur in the interstellar medium. The recombination efficiency decreases rapidly with increasing temperature and is zero at 13 K. This allows us to estimate an upper limit to the value of the atom adsorption energy E(a) approximately 29 meV, in agreement with previous calculations.


Physical Chemistry Chemical Physics | 2004

Investigation of the protonation site in the dialanine peptide by infrared multiphoton dissociation spectroscopy

Bruno Lucas; Gilles Grégoire; Joël Lemaire; Philippe Maitre; J.M. Ortega; Alisa Rupenyan; Bernd Reimann; Jean Pierre Schermann; C. Desfrançois

Protonated dialanine cations have been isolated in a Fourier transform ion cyclotron resonance mass-spectrometer (FT-ICR-MS) and subjected to infrared multiphoton dissociation (IRMPD) at the free electron laser facility CLIO in Orsay (France). The spectral dependence of the IR induced fragmentation pattern in the mid-infrared region (800–2000 cm−1) is interpreted with the help of structure and vibrational spectrum calculations of the different protonated conformers. This comparison allows for the assignment of the proton on the terminal amino group, as the most favourable proton site, the neighbouring amide bond being in the trans conformation.


international free electron laser conference | 2003

Ultrasensitive spectroscopy of ionic reactive intermediates in the gas phase performed with the first coupling of an IR FEL with an FTICR-MS

Philippe Maı̂tre; Sophie Le Caër; Aude Simon; William Jones; Joël Lemaire; Hélène Mestdagh; Michel Heninger; G. Mauclaire; Pierre Boissel; R. Prazeres; F. Glotin; J.M. Ortega

First example of coupling a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS) with an infrared Free Electron Laser (FEL) is presented. This experimental setup is ideally suited for the direct structural characterization of reactive polyatomic ions. Ultrasensitive measurements of the infrared vibrational spectrum of ionic reactive intermediate selectively prepared is allowed by the association of the high peak power of the FEL, its wide tunability, and the flexibility of FTICR-MS, where several mass selections and ion-molecule reactions can be combined. These possibilities are demonstrated in the case of Fe + complexes where two photofragmentation pathways compete. The resulting infrared spectrum is in excellent agreement, both with respect to the position and to the relative intensities of the infrared transitions, with predicted by ab initio electronic structure calculations. r 2003 Elsevier Science B.V. All rights reserved.


Journal of the American Chemical Society | 2008

Structure of Electron-Capture Dissociation Fragments from Charge-Tagged Peptides Probed by Tunable Infrared Multiple Photon Dissociation

Gilles Frison; Guillaume van der Rest; František Tureček; Thierry Besson; Joël Lemaire; Philippe Maitre; Julia Chamot-Rooke

In this study, we propose the first spectroscopic structural characterization of c-type ions produced by ECD of a peptide. The structure of c-type ions formed by electron capture dissociation and the overall mechanism leading to their formation are still a question of debate. Depending on the mechanism, c-type ions have been proposed to have either an enol-imine structure (-C(OH)NH) or an amide one (-C(O)-NH2). Since these ions are isomeric, mass spectrometry only cannot discriminate between them, but infrared spectroscopy can bring experimental evidence and help determine which scheme is operative. Using the coupling between a tunable free electron laser and a FT-ICR mass spectrometer, we show that c-type ions have an amide structure, characterized by an IR signature of the C=O stretch at 1731 cm(-1). This result is particularly interesting from the perspective of the elucidation of the ECD mechanism.


Journal of the American Chemical Society | 2008

Infrared Signature of DNA G-Quadruplexes in the Gas Phase

Valérie Gabelica; Frédéric Rosu; Edwin De Pauw; Joël Lemaire; Jean-Christophe Gillet; Jean-Christophe Poully; Frédéric Lecomte; Gilles Grégoire; J. P. Schermann; C. Desfrançois

DNA oligonucleotide ions forming G-quadruplex structures were studied in the gas phase using IRMPD spectroscopy. Data interpretation on these large biomolecule ions was made using carefully chosen control experiments. The major finding is a fingerprint of hydrogen bonding in the gas phase in the guanine C6O6 stretching mode that allows probing of the conservation of G-quartets in the gas phase. The experiments demonstrate the conservation of G-quadruplex hydrogen bonds in the human telomeric sequence d(TTAGGG)4.


Chemistry: A European Journal | 2009

Molecular complexes of simple anions with electron-deficient arenes: spectroscopic evidence for two types of structural motifs for anion-arene interactions.

Barbara Chiavarino; Maria Elisa Crestoni; Simonetta Fornarini; Francesco Lanucara; Joël Lemaire; Philippe Maitre; Debora Scuderi

Anion-pi interactions between a pi-acidic aromatic system and an anion are gaining increasing recognition in chemistry and biology. Herein, the binding features of an electron-deficient aromatic system (1,3,5-trinitrobenzene (TNB)) and selected anions (OH-, Br-, and I-) are examined in the gas phase by using the combined information derived from collision-induced dissociation experiments at variable energy, infrared multiple-photon dissociation spectroscopy, and quantum chemical calculations. We provide spectroscopic evidence for two different structural motifs of anion-arene complexes depending on the nature of the anion. The TNB-OR- complexes (R=H, or alkyl groups which were studied earlier) adopt an anionic sigma-complex structure whereby RO- attacks the aromatic ring with covalent bond formation, and develops a tetrahedral ring carbon bound to H and OR. The halide complexes rather conform to a structure in which the TNB moiety is hardly altered, and the halogen is placed on an unsubstituted carbon atom over the periphery of the ring at a C-X distance that is appreciably longer than a typical covalent bond length. The ensuing structural motif, previously characterized in the solid state and named weak sigma interaction, is now confirmed by an IR spectroscopic assay in the gas phase, in which the sampled species are unperturbed by crystal packing or solvation effects.


Physical Chemistry Chemical Physics | 2006

Gas phase infrared multiple-photon dissociation spectra of methanol, ethanol and propanol proton-bound dimers, protonated propanol and the propanol/water proton-bound dimer

Travis D. Fridgen; Luke MacAleese; Terry B. McMahon; Joël Lemaire; Philippe Maitre

The infrared multiphoton dissociation (IRMPD) spectra of three homogenous proton-bound dimers are presented and the major features are assigned based on comparisons with the neutral alcohol and with density functional theory calculations. As well, the IRMPD spectra of protonated propanol and the propanol/water proton-bound dimer (or singly hydrated protonated propanol) are presented and analysed. Two primary IRMPD photoproducts were observed for each of the alcohol proton bound dimers and were found to vary with the frequency of the radiation impinging upon the ions. For example, when the proton-bound dimer absorbs weakly a larger amount of S(N)2 product, protonated ether and water, are observed. When the proton-bound dimer absorbs more strongly, an increase in the simple dissociation product, protonated alcohol and neutral alcohol, is observed. With the aid of RRKM calculations this frequency dependence of the branching ratio is explained by assuming that photon absorption is faster than dissociation for these species and that only a few photons extra are necessary to make the higher-energy dissociation channel (simple cleavage) competitive with the lower energy (S(N)2) reaction channel.


Physical Chemistry Chemical Physics | 2005

Infrared spectra of homogeneous and heterogeneous proton-bound dimers in the gas phase

Travis D. Fridgen; Luke MacAleese; Philippe Maitre; Terry B. McMahon; Pierre Boissel; Joël Lemaire

Infrared multiphoton dissociation spectra of three homogeneous and two heterogeneous proton-bound dimers were recorded in the gas phase. Comparison of the experimental infrared spectra recorded in the fingerprint region of the proton-bound dimers with spectra predicted by electronic structure calculations shows that all modes which are observed contain motion of the proton oscillating between the two monomers. The O-H-O asymmetric stretch for the homogeneous dimers is shown to occur at around 800 cm-1. As expected, the O-H-O asymmetric stretching modes for the heterogeneous proton-bound dimers are observed to shift to significantly higher energy with respect to those for the homogeneous proton-bound dimers due to the asymmetry of the O-H-O moeity. This shift is shown to be predictable from the difference in proton affinities between the two monomers. Density functional predictions of the infrared spectra based on the harmonic oscillator model are demonstrated to predict the observed spectra of the homogeneous proton-bound dimers with reasonable accuracy. Calculations of the structure and infrared spectrum of protonated diglyme at the B3LYP/6-31+G** level and basis also agree well with an infrared spectrum recorded previously. For both heterogeneous proton-bound dimers, however, the predicted spectra are blue-shifted with respect to experiment.

Collaboration


Dive into the Joël Lemaire's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Heninger

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Chiavarino

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge