Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel M. Kralj is active.

Publication


Featured researches published by Joel M. Kralj.


Nature Methods | 2012

Optical recording of action potentials in mammalian neurons using a microbial rhodopsin

Joel M. Kralj; Adam D. Douglass; Daniel Hochbaum; Dougal Maclaurin; Adam E. Cohen

Reliable optical detection of single action potentials in mammalian neurons has been one of the longest-standing challenges in neuroscience. Here we achieved this goal by using the endogenous fluorescence of a microbial rhodopsin protein, Archaerhodopsin 3 (Arch) from Halorubrum sodomense, expressed in cultured rat hippocampal neurons. This genetically encoded voltage indicator exhibited an approximately tenfold improvement in sensitivity and speed over existing protein-based voltage indicators, with a roughly linear twofold increase in brightness between −150 mV and +150 mV and a sub-millisecond response time. Arch detected single electrically triggered action potentials with an optical signal-to-noise ratio >10. Arch(D95N) lacked endogenous proton pumping and had 50% greater sensitivity than wild type but had a slower response (41 ms). Nonetheless, Arch(D95N) also resolved individual action potentials. Microbial rhodopsin–based voltage indicators promise to enable optical interrogation of complex neural circuits and electrophysiology in systems for which electrode-based techniques are challenging.


Nature Methods | 2014

All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins

Daniel Hochbaum; Yongxin Zhao; Samouil L Farhi; Nathan Cao Klapoetke; Christopher A. Werley; Vikrant Kapoor; Peng Zou; Joel M. Kralj; Dougal Maclaurin; Niklas Smedemark-Margulies; Jessica L. Saulnier; Gabriella L. Boulting; Christoph Straub; Yong Ku Cho; Michael Melkonian; Gane Ka-Shu Wong; Venkatesh N. Murthy; Bernardo L. Sabatini; Edward S. Boyden; Robert E. Campbell; Adam E. Cohen

All-optical electrophysiology—spatially resolved simultaneous optical perturbation and measurement of membrane voltage—would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and QuasAr2, which show improved brightness and voltage sensitivity, have microsecond response times and produce no photocurrent. We engineered a channelrhodopsin actuator, CheRiff, which shows high light sensitivity and rapid kinetics and is spectrally orthogonal to the QuasArs. A coexpression vector, Optopatch, enabled cross-talk–free genetically targeted all-optical electrophysiology. In cultured rat neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials (APs) in dendritic spines, synaptic transmission, subcellular microsecond-timescale details of AP propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell–derived neurons. In rat brain slices, Optopatch induced and reported APs and subthreshold events with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without the use of conventional electrodes.


Science | 2011

Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein

Joel M. Kralj; Daniel Hochbaum; Adam D. Douglass; Adam E. Cohen

Introducing Bacterial Electrophysiology Bacterial electrophysiology has been limited by the inability to measure the membrane potential of single cells. Kralj et al. (p. 345) engineered a class of voltage-sensitive fluorescent membrane proteins to perform electrophysiological measurements on individual intact bacteria. These measurements showed that Escherichia coli generate electrical spikes, reminiscent of action potentials in neurons. The response of electrical spiking in bacteria was assessed in response to a wide range of physical and chemical perturbations, and was correlated with efflux activity. In the future, the probe should be useful in determining the roles of membrane potential in a variety of medically, environmentally, and industrially important bacteria. An optical bioprobe reveals action potential–like electrical spikes in individual bacteria. Bacteria have many voltage- and ligand-gated ion channels, and population-level measurements indicate that membrane potential is important for bacterial survival. However, it has not been possible to probe voltage dynamics in an intact bacterium. Here we developed a method to reveal electrical spiking in Escherichia coli. To probe bacterial membrane potential, we engineered a voltage-sensitive fluorescent protein based on green-absorbing proteorhodopsin. Expression of the proteorhodopsin optical proton sensor (PROPS) in E. coli revealed electrical spiking at up to 1 hertz. Spiking was sensitive to chemical and physical perturbations and coincided with rapid efflux of a small-molecule fluorophore, suggesting that bacterial efflux machinery may be electrically regulated.


Molecular & Cellular Proteomics | 2008

Cell-free Co-expression of Functional Membrane Proteins and Apolipoprotein, Forming Soluble Nanolipoprotein Particles

Jenny A. Cappuccio; Craig D. Blanchette; Todd Sulchek; Erin S. Arroyo; Joel M. Kralj; Angela K. Hinz; Edward A. Kuhn; Brett A. Chromy; Brent W. Segelke; Kenneth J. Rothschild; Julia Fletcher; Federico Katzen; Todd Peterson; Wieslaw Kudlicki; Graham Bench; Paul D. Hoeprich; Matthew A. Coleman

Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Δ1–49 apolipoprotein A-I fragment (Δ49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR → M transition. Importantly the functional bR was solubilized in discoidal bR·NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Δ49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies.


Journal of Biological Chemistry | 2009

His-75 in Proteorhodopsin, a Novel Component in Light-driven Proton Translocation by Primary Pumps

Vladislav B. Bergo; Oleg A. Sineshchekov; Joel M. Kralj; Ranga Partha; Elena N. Spudich; Kenneth J. Rothschild; John L. Spudich

Proteorhodopsins (PRs), photoactive retinylidene membrane proteins ubiquitous in marine eubacteria, exhibit light-driven proton transport activity similar to that of the well studied bacteriorhodopsin from halophilic archaea. However, unlike bacteriorhodopsin, PRs have a single highly conserved histidine located near the photoactive site of the protein. Time-resolved Fourier transform IR difference spectroscopy combined with visible absorption spectroscopy, isotope labeling, and electrical measurements of light-induced charge movements reveal participation of His-75 in the proton translocation mechanism of PR. Substitution of His-75 with Ala or Glu perturbed the structure of the photoactive site and resulted in significantly shifted visible absorption spectra. In contrast, His-75 substitution with a positively charged Arg did not shift the visible absorption spectrum of PR. The mutation to Arg also blocks the light-induced proton transfer from the Schiff base to its counterion Asp-97 during the photocycle and the acid-induced protonation of Asp-97 in the dark state of the protein. Isotope labeling of histidine revealed that His-75 undergoes deprotonation during the photocycle in the proton-pumping (high pH) form of PR, a reaction further supported by results from H75E. Finally, all His-75 mutations greatly affect charge movements within the PR and shift its pH dependence to acidic values. A model of the proteorhodopsin proton transport process is proposed as follows: (i) in the dark state His-75 is positively charged (protonated) over a wide pH range and interacts directly with the Schiff base counterion Asp-97; and (ii) photoisomerization-induced transfer of the Schiff base proton to the Asp-97 counterion disrupts its interaction with His-75 and triggers a histidine deprotonation.


Applied Physics Letters | 2002

A glow-discharge approach for functionalization of carbon nanotubes

Bishun N. Khare; Meyya Meyyappan; Joel M. Kralj; Patrick Wilhite; Metagus Sisay; Hiroshi Imanaka; Jessica E. Koehne; Charles W. Baushchlicher

We demonstrate the functionalization of single-walled carbon nanotubes (SWNTs) using a glow discharge for generating atomic or molecular radicals. A 30-s exposure to a cold plasma of H2 results in near-saturation coverage of SWNT with atomic hydrogen. Functionalization of SWNTs with atomic hydrogen is confirmed by an infrared band at 2924 cm−1, characteristic of C–H stretching mode. A corresponding decrease in the ultraviolet absorption is also observed, which is due to a loss of some conjugated C–C π bonds in hydrogen covered SWNTs.


Journal of Pharmacological and Toxicological Methods | 2016

Cardiotoxicity screening with simultaneous optogenetic pacing, voltage imaging and calcium imaging

Graham Dempsey; Khuram W. Chaudhary; Nicholas Atwater; Cuong Nguyen; Barry S. Brown; John D. McNeish; Adam E. Cohen; Joel M. Kralj

INTRODUCTION The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative seeks an in vitro test to accurately predict clinical Torsades de Pointes (TdP). We developed a cardiotoxicity assay incorporating simultaneous measurement of the action potential (AP) waveform and Ca(2+) transient (CT) in human iPSC-derived cardiomyocytes (CMs). Concurrent optogenetic pacing provided a well-controlled electrophysiological background. METHODS We used the Optopatch platform for all-optical electrophysiology (Hochbaum et al., 2014). In a monolayer culture, a subset of cells expressed a genetically encoded, calcium and voltage reporter, CaViar (Hou, Kralj, Douglass, Engert, & Cohen, 2014), while others expressed a channelrhodopsin variant, CheRiff. Optical pacing of CheRiff-expressing cells synchronized the syncytium. We screened 12 compounds (11 acute, 1 chronic) to identify electrophysiological (AP rise time, AP50, AP90, beat rate) and CT effects in spontaneously beating and paced cultures (1Hz, 2Hz). RESULTS CaViar reported spontaneous and paced APs and CTs with high signal-to-noise ratio and low phototoxicity. Quinidine, flecainide, E-4031, digoxin and cisapride prolonged APs, while verapamil and nifedipine shortened APs. Early after depolarizations (EADs) were elicited by quinidine, flecainide and cisapride. All but four compounds (amiodarone, chromanol, nifedipine, verapamil) prolonged AP rise time. Nifedipine and verapamil decreased CT amplitude, while digoxin increased CT amplitude. Pentamidine prolonged APs after chronic exposure. DISCUSSION The Optopatch platform provides a robust assay to measure APs and CTs in hiPSC-CMs. This addresses the CiPA mandate and will facilitate comparisons of cell-based assays to human clinical data.


Frontiers in Physiology | 2014

Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents

Jennifer H. Hou; Joel M. Kralj; Adam D. Douglass; Florian Engert; Adam E. Cohen

The cardiac action potential (AP) and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.


Journal of Biological Chemistry | 2006

Conformational changes in the photocycle of Anabaena sensory rhodopsin : Absence of the schiff base counterion protonation signal

Vladislav B. Bergo; Maria Ntefidou; Vishwa D. Trivedi; Jason J. Amsden; Joel M. Kralj; Kenneth J. Rothschild; John L. Spudich

Anabaena sensory rhodopsin (ASR) is a novel microbial rhodopsin recently discovered in the freshwater cyanobacterium Anabaena sp. PCC7120. This protein most likely functions as a photosensory receptor as do the related haloarchaeal sensory rhodopsins. However, unlike the archaeal pigments, which are tightly bound to their cognate membrane-embedded transducers, ASR interacts with a soluble cytoplasmic protein analogous to transducers of animal vertebrate rhodopsins. In this study, infrared spectroscopy was used to examine the molecular mechanism of photoactivation in ASR. Light adaptation of the pigment leads to a phototransformation of an all-trans/15-anti to 13-cis/15-syn retinylidene-containing species very similar in chromophore structural changes to those caused by dark adaptation in bacteriorhodopsin. Following 532 nm laser-pulsed excitation, the protein exhibits predominantly an all-trans retinylidene photocycle containing a deprotonated Schiff base species similar to those of other microbial rhodopsins such as bacteriorhodopsin, sensory rhodopsin II, and Neurospora rhodopsin. However, no changes are observed in the Schiff base counterion Asp-75, which remains unprotonated throughout the photocycle. This result along with other evidence indicates that the Schiff base proton release mechanism differs significantly from that of other known microbial rhodopsins, possibly because of the absence of a second carboxylate group at the ASR photoactive site. Several conformational changes are detected during the ASR photocycle including in the transmembrane helices E and G as indicated by hydrogen-bonding alterations of their native cysteine residues. In addition, similarly to animal vertebrate rhodopsin, perturbations of the polar head groups of lipid molecules are detected.


Journal of the American Chemical Society | 2014

Flash Memory: Photochemical Imprinting of Neuronal Action Potentials onto a Microbial Rhodopsin

Veena Venkatachalam; Daan Brinks; Dougal Maclaurin; Daniel Hochbaum; Joel M. Kralj; Adam E. Cohen

We developed a technique, “flash memory”, to record a photochemical imprint of the activity state—firing or not firing—of a neuron at a user-selected moment in time. The key element is an engineered microbial rhodopsin protein with three states. Two nonfluorescent states, D1 and D2, exist in a voltage-dependent equilibrium. A stable fluorescent state, F, is reached by a photochemical conversion from D2. When exposed to light of a wavelength λwrite, population transfers from D2 to F, at a rate determined by the D1 ⇌ D2 equilibrium. The population of F maintains a record of membrane voltage which persists in the dark. Illumination at a later time at a wavelength λread excites fluorescence of F, probing this record. An optional third flash at a wavelength λreset converts F back to D2, for a subsequent write–read cycle. The flash memory method offers the promise to decouple the recording of neural activity from its readout. In principle, the technique may enable one to generate snapshots of neural activity in a large volume of neural tissue, e.g., a complete mouse brain, by circumventing the challenge of imaging a large volume with simultaneous high spatial and high temporal resolution. The proof-of-principle flash memory sensors presented here will need improvements in sensitivity, speed, brightness, and membrane trafficking before this goal can be realized.

Collaboration


Dive into the Joel M. Kralj's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Spudich

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena N. Spudich

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge