Joël Meunier
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joël Meunier.
Ecological Entomology | 2013
Janine W. Y. Wong; Joël Meunier; Mathias Kölliker
Parental care increases the fitness of offspring at a cost to the parents in terms of residual reproductive success. This trade‐off may be affected by ecology, life history and the social environment, which raises the question as to how these factors contribute to the evolution of parental care. Here, previous hypotheses concerning the evolution of parental care in insects are summarized and discussed and the underlying empirical evidence is reviewed. Ecological factors such as harsh environments, ephemeral food sources or predation pressure are broadly accepted as evolutionary drivers of parental care. The most consistent evidence supports a role for natural enemies such as predators, microbes and cannibalistic conspecifics. Also, the importance of ecological factors may interact with the life history (parity) of a species, either as a pre‐adaptation facilitating the evolution of parental care or as a consequence of enhanced parental investment under parental care. Yet, only limited experimental research has been carried out to test the combined influence of ecology and life history in the evolution of parental care. Several forms of care can mediate the transition from solitary to family living, which entails the emergence of a novel – social – environment that generates new selection pressures from interactions within and between families. In this context, we review examples of studies on communal breeding, brood parasitism, parent–offspring conflict and co‐adaptation, and discuss how these social interactions may in turn be influenced by ecological factors such as food availability or population density. Insects are uniquely suitable for experimental and comparative research on the complex interplay between ecology, life history, and the social environment.
Philosophical Transactions of the Royal Society B | 2015
Joël Meunier
The evolution of group living requires that individuals limit the inherent risks of parasite infection. To this end, group living insects have developed a unique capability of mounting collective anti-parasite defences, such as allogrooming and corpse removal from the nest. Over the last 20 years, this phenomenon (called social immunity) was mostly studied in eusocial insects, with results emphasizing its importance in derived social systems. However, the role of social immunity in the early evolution of group living remains unclear. Here, I investigate this topic by first presenting the definitions of social immunity and discussing their applications across social systems. I then provide an up-to-date appraisal of the collective and individual mechanisms of social immunity described in eusocial insects and show that they have counterparts in non-eusocial species and even solitary species. Finally, I review evidence demonstrating that the increased risks of parasite infection in group living species may both decrease and increase the level of personal immunity, and discuss how the expression of social immunity could drive these opposite effects. By highlighting similarities and differences of social immunity across social systems, this review emphasizes the potential importance of this phenomenon in the early evolution of the multiple forms of group living in insects.
Behavioral Ecology and Sociobiology | 2011
Joël Meunier; Susana Figueiredo Pinto; Reto Burri; Alexandre Roulin
Although melanin is the most common pigment in animal integuments, the adaptive function of variation in melanin-based coloration remains poorly understood. The individual fitness returns associated with melanin pigments can be variable across species as these pigments can have physical and biological protective properties and genes involved in melanogenesis may vary in the intensity of pleiotropic effects. Moreover, dark and pale coloration can also enhance camouflage in alternative habitats and melanin-based coloration can be involved in social interactions. We investigated whether darker or paler individuals achieve a higher fitness in birds, a taxon wherein associations between melanin-based coloration and fitness parameters have been studied in a large number of species. A meta-analysis showed that the degree of melanin-based coloration was not significantly associated with laying date, clutch size, brood size, and survival across 26 species. Similar results were found when restricting the analyses to non-sexually dimorphic birds, colour polymorphic and monomorphic species, in passerines and non-passerines and in species for which inter-individual variation in melanism is due to colour intensity. However, eumelanic coloration was positively associated with clutch and brood size in sexually dimorphic species and those that vary in the size of black patches, respectively. Given that greater extent of melanin-based coloration was positively associated with reproductive parameters and survival in some species but negatively in other species, we conclude that in birds the sign and magnitude of selection exerted on melanin-based coloration is species- or trait-specific.
New Phytologist | 2010
Frédéric Masclaux; Robert L. Hammond; Joël Meunier; Caroline Gouhier-Darimont; Laurent Keller; Philippe Reymond
In many organisms, individuals behave more altruistically towards relatives than towards unrelated individuals. Here, we conducted a study to determine if the performance of Arabidopsis thaliana is influenced by whether individuals are in competition with kin or non-kin. We selected seven pairs of genetically distinct accessions that originated from local populations throughout Europe. We measured the biomass of one focal plant surrounded by six kin or non-kin neighbours in in vitro growth experiments and counted the number of siliques produced per pot by one focal plant surrounded by four kin or non-kin neighbours. The biomass and number of siliques of a focal plant were not affected by the relatedness of the neighbour. Depending on the accession, a plant performed better or worse in a pure stand than when surrounded by non-kin plants. In addition, whole-genome microarray analyses revealed that there were no genes differentially expressed between kin and non-kin conditions. In conclusion, our study does not provide any evidence for a differential response to kin vs non-kin in A. thaliana. Rather, the outcome of the interaction between kin and non-kin seems to depend on the strength of the competitive abilities of the accessions.
Journal of Evolutionary Biology | 2009
Joël Meunier; Michel Chapuisat
In social animals, body size can be shaped by multiple factors, such as direct genetic effects, maternal effects, or the social environment. In ants, the body size of queens correlates with the social structure of the colony: colonies headed by a single queen (monogyne) generally produce larger queens that are able to found colonies independently, whereas colonies headed by multiple queens (polygyne) tend to produce smaller queens that stay in their natal colony or disperse with workers. We performed a cross‐fostering experiment to investigate the proximate causes of queen size variation in the socially polymorphic ant Formica selysi. As expected if genetic or maternal effects influence queen size, eggs originating from monogyne colonies developed into larger queens than eggs collected from polygyne colonies, be they raised by monogyne or polygyne workers. In contrast, eggs sampled in monogyne colonies were smaller than eggs sampled in polygyne colonies. Hence, eggs from monogyne colonies are smaller but develop into larger queens than eggs from polygyne colonies, independently of the social structure of the workers caring for the brood. These results demonstrate that a genetic polymorphism or maternal effect transmitted to the eggs influences queen size, which probably affects the social structure of new colonies.
The American Naturalist | 2014
Joachim Falk; Janine W. Y. Wong; Mathias Kölliker; Joël Meunier
The evolutionary transition from solitary to social life is driven by direct and indirect fitness benefits of social interactions. Understanding the conditions promoting the early evolution of social life therefore requires identification of these benefits in nonderived social systems, such as animal families where offspring are mobile and able to disperse and will survive independently. Family life is well known to provide benefits to offspring through parental care, but research on sibling interactions generally focused on fitness costs to offspring due to competitive behaviors. Here we show experimentally that sibling interactions also reflect cooperative behaviors in the form of food sharing in nonderived families of the European earwig, Forficula auricularia. Food ingested by individual offspring was transferred to their siblings through mouth-to-anus contacts and active allo-coprophagy. These transfers occurred in both the presence and the absence of the tending mothers, even though the direct contact with the mothers limited sibling food sharing. Neither food deprivation or relatedness influenced the total amount of transferred food, but relatedness affected frass release and the behavioral mechanisms mediating food sharing. Related offspring obtained food predominately through allo-coprophagy, whereas unrelated offspring obtained food through mouth-to-anus contacts. Overall, this study emphasizes that sibling cooperation may be a key process promoting the early evolution of social life.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Joël Meunier; Mathias Kölliker
The family is an arena for conflicts between offspring, mothers and fathers that need resolving to promote the evolution of parental care and the maintenance of family life. Co-adaptation is known to contribute to the resolution of parent–offspring conflict over parental care by selecting for combinations of offspring demand and parental supply that match to maximize the fitness of family members. However, multiple paternity and differences in the level of care provided by mothers and fathers can generate antagonistic selection on offspring demand (mediated, for example, by genomic imprinting) and possibly hamper co-adaptation. While parent–offspring co-adaptation and parental antagonism are commonly considered two major processes in the evolution of family life, their co-occurrence and the evolutionary consequences of their joint action are poorly understood. Here, we demonstrate the simultaneous and entangled effects of these two processes on outcomes of family interactions, using a series of breeding experiments in the European earwig, Forficula auricularia, an insect species with uniparental female care. As predicted from parental antagonism, we show that paternally inherited effects expressed in offspring influence both maternal care and maternal investment in future reproduction. However, and as expected from the entangled effects of parental antagonism and co-adaptation, these effects critically depended on postnatal interactions with caring females and maternally inherited effects expressed in offspring. Our results demonstrate that parent–offspring co-adaptation and parental antagonism are entangled key drivers in the evolution of family life that cannot be fully understood in isolation.
Biology Letters | 2012
Joël Meunier; Mathias Kölliker
The aggregation of parents with offspring is generally associated with different forms of care that improve offspring survival at potential costs to parents. Under poor environments, the limited amount of resources available can increase the level of competition among family members and consequently lead to adaptive changes in parental investment. However, it remains unclear as to what extent such changes modify offspring fitness, particularly when offspring can survive without parents such as in the European earwig, Forficula auricularia. Here, we show that under food restriction, earwig maternal presence decreased offspring survival until adulthood by 43 per cent. This effect was independent of sibling competition and was expressed after separation from the female, indicating lasting detrimental effects. The reduced benefits of maternal presence on offspring survival were not associated with higher investment in future reproduction, suggesting a condition-dependent effect of food restriction on mothers and local mother–offspring competition for food. Overall, these findings demonstrate for the first time a long-term negative effect of maternal presence on offspring survival in a species with maternal care, and highlight the importance of food availability in the early evolution of family life.
BMC Evolutionary Biology | 2014
Lisa K. Koch; Joël Meunier
BackgroundOviparous females have three main options to increase their reproductive success: investing into egg number, egg mass and/or egg care. Although allocating resources to either of these three components is known to shape offspring number and size, potential trade-offs among them may have key impacts on maternal and offspring fitness. Here, we tested the occurrence of phenotypic trade-offs between egg number, egg mass and maternal expenditure on egg care in the European earwig, Forficula auricularia, an insect with pre- and post-hatching forms of maternal care. In particular, we used a series of laboratory observations and experiments to investigate whether these three components non-additively influenced offspring weight and number at hatching, and whether they were associated with potential costs to females in terms of future reproduction.ResultsWe found negative associations between egg number and mass as well as between egg number and maternal expenditure on egg care. However, these trade-offs could only be detected after statistically correcting for female weight at egg laying. Hatchling number was not determined by single or additive effects among the three life-history traits, but instead by pairwise interactions among them. In particular, offspring number was positively associated with the number of eggs only in clutches receiving high maternal care or consisting of heavy eggs, and negatively associated with mean egg mass in clutches receiving low care. In contrast, offspring weight was positively associated with egg mass only. Finally, maternal expenditure on egg care reduced their future reproduction, but this effect was only detected when mothers were experimentally isolated from their offspring at egg hatching.ConclusionsOverall, our study reveals simultaneous trade-offs between the number, mass and care of eggs. It also demonstrates that these factors interact in their impact on offspring production, and that maternal expenditure on egg care possibly shapes female future reproduction. These findings emphasize that studying reproductive success requires consideration of phenotypic trade-offs between egg-number, egg mass and egg care in oviparous species.
Nature Communications | 2015
Mathias Kölliker; Stefan Boos; Janine W. Y. Wong; Lilian Röllin; Dimitri Stucki; Shirley Raveh; Min Wu; Joël Meunier
The genetic conflict between parents and their offspring is a cornerstone of kin selection theory and the gene-centred view of evolution, but whether it actually occurs in natural systems remains an open question. Conflict operates only if parenting is driven by genetic trade-offs between offspring performance and the parents ability to raise additional offspring, and its expression critically depends on the shape of these trade-offs. Here we investigate the occurrence and nature of genetic conflict in an insect with maternal care, the earwig Forficula auricularia. Specifically, we test for a direct response to experimental selection on female future reproduction and correlated responses in current offspring survival, developmental rate and growth. The results demonstrate genetic trade-offs that differ in shape before and after hatching. Our study not only provides direct evidence for parent–offspring conflict but also highlights that conflict is not inevitable and critically depends on the genetic trade-offs shaping parental investment.