Joel Park
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joel Park.
Journal of Affective Disorders | 2016
Peijing Rong; Jun Liu; Liping Wang; Rupeng Liu; Jiliang Fang; Jingjun Zhao; Yufeng Zhao; Honghong Wang; Mark G. Vangel; Sharon Sun; Hui Ben; Joel Park; Shaoyuan Li; Hong Meng; Bing Zhu; Jian Kong
BACKGROUND Depression presents a significant burden to both patients and society. One treatment that has emerged is vagus nerve stimulation (VNS), an FDA-approved physical treatment for depressive disorders. However, the application of this intervention has been limited by the involvement of surgery and potential side effects. The aim of this study is to explore the effectiveness of stimulating the superficial branches of the vagus nerve as a solo treatment for MDD. METHODS This is a nonrandomized, controlled study. The first cohort of patients (n=91) only received transcutaneous auricular VNS (taVNS) for 12 weeks. In the second cohort (n=69), patients first received 4 weeks of sham taVNS followed by 8 weeks of taVNS. All treatments were self-administered by the patients at home after they received training from the hospitals. The primary outcome measurement was the 24-item Hamilton Depression Rating Scale measured at weeks 0, 4, 8, and 12. Data analysis included a timelag analysis comparing (1) real and sham taVNS groups at week 4; (2) the real taVNS group at week 4 vs the sham taVNS group at week 8 (fourth week of real taVNS following 4 weeks of sham); and (3) the real taVNS group at week 8 vs the sham taVNS group at week 12 (eighth week of real taVNS following sham). RESULTS After four weeks of treatment, MDD patients in the taVNS group showed greater improvement than patients in the sham taVNS group as indicated by Hamilton score changes as well as response and remission rates at week four. In addition, we also found that the clinical improvements continued until week 12 during taVNS. LIMITATIONS Patients were not randomized in this study. CONCLUSIONS Our results suggest that taVNS is a promising, safe, and cost-effective therapeutic method for mild and moderate MDD.
Journal of Affective Disorders | 2016
Jun Liu; Jiliang Fang; Zengjian Wang; Peijing Rong; Yang Hong; Yangyang Fan; Xiaoling Wang; Joel Park; Yu Jin; Chunhong Liu; Bing Zhu; Jian Kong
BACKGROUND The amygdala is a key region in emotion processing, and studies have suggested that amygdala-frontal functional connectivity deficits could be modulated by antidepressants in major depressive disorder (MDD). Transcutaneous vagus nerve stimulation (tVNS), a non-invasive, peripheral neuromodulation method at the ear, has shown promising results in treating major depressive disorder (MDD) in several pilot studies. However, the neural mechanism underlying tVNS treatment of depression has not been fully investigated. In this study, we investigated how tVNS can modulate the amygdala-lateral prefrontal network resting state functional connectivity (rsFC) in mild or moderate major depressive disorder (MDD) patients. METHODS Forty-nine MDD patients were recruited and received tVNS or sham tVNS (stVNS) treatments for four weeks. Resting state fMRI scans were applied before and after treatments. RESULTS After 1 month of tVNS treatment, the 24-item Hamilton Depression Rating Scale (HAMD) scores were reduced significantly in the tVNS group as compared with the sham tVNS group. The rsFC in the tVNS group between the right amygdala and left dorsolateral prefrontal cortex was increased compared with sham tVNS. All the rsFC increases were also associated with HAMD reduction as well as reductions in the anxiety and retardation HAMD subscales. CONCLUSIONS tVNS can significantly modulate the amygdala-lateral prefrontal rsFC of MDD patients; our results provide insights into the brain mechanism of tVNS treatment for MDD patients.
Scientific Reports | 2015
Natalia Egorova; Joel Park; Scott P. Orr; Irving Kirsch; Randy L. Gollub; Jian Kong
Our experience with the world is shaped not only directly through personal exposure but also indirectly through observing others and learning from their experiences. Using a conditioning paradigm, we investigated how directly and observationally learned information can affect pain perception, both consciously and non-consciously. Differences between direct and observed cues were manifest in higher pain ratings and larger skin conductance responses to directly experienced cues. However, the pain modulation effects produced by conditioning were of comparable magnitude for direct and observational learning. These results suggest that social observation can induce positive and negative pain modulation. Importantly, the fact that cues learned by observation and activated non-consciously still produced a robust conditioning effect that withstood extinction highlights the role of indirect exposure in placebo and nocebo effects.
NeuroImage: Clinical | 2016
Xiaoyun Wang; Zengjian Wang; Jian Liu; Jun Chen; Xian Liu; Guangning Nie; Joon-Seok Byun; Yilin Liang; Joel Park; Ruiwang Huang; Ming Liu; Bo Liu; Jian Kong
As a widely-applied alternative therapy, acupuncture is gaining popularity in Western society. One challenge that remains, however, is incorporating it into mainstream medicine. One solution is to combine acupuncture with other conventional, mainstream treatments. In this study, we investigated the combination effect of acupuncture and the antidepressant fluoxetine, as well as its underlying mechanism using resting state functional connectivity (rsFC) in patients with major depressive disorders. Forty-six female depressed patients were randomized into a verum acupuncture plus fluoxetine or a sham acupuncture plus fluoxetine group for eight weeks. Resting-state fMRI data was collected before the first and last treatments. Results showed that compared with those in the sham acupuncture treatment, verum acupuncture treatment patients showed 1) greater clinical improvement as indicated by Montgomery–Åsberg Depression Rating Scale (MADRS) and Self-Rating Depression Scale (SDS) scores; 2) increased rsFC between the left amygdala and subgenual anterior cingulate cortex (sgACC)/preguenual anterior cingulate cortex (pgACC); 3) increased rsFC between the right amygdala and left parahippocampus (Para)/putamen (Pu). The strength of the amygdala-sgACC/pgACC rsFC was positively associated with corresponding clinical improvement (as indicated by a negative correlation with MADRS and SDS scores). Our findings demonstrate the additive effect of acupuncture to antidepressant treatment and suggest that this effect may be achieved through the limbic system, especially the amygdala and the ACC.
NeuroImage: Clinical | 2017
Jing Li; Zengjian Wang; JiWon Hwang; Bingcong Zhao; Xinjing Yang; Suicheng Xin; Yu Wang; Huili Jiang; Peng Shi; Ye Zhang; Xu Wang; Courtney Lang; Joel Park; Tuya Bao; Jian Kong
Background Subthreshold depression (StD) is associated with substantial functional impairments due to depressive symptoms that do not fully meet the diagnosis of major depressive disorder (MDD). Its high incidence in the general population and debilitating symptoms has recently put it at the forefront of mood disorder research. Aim In this study we investigated common volumetric brain changes in both young and middle-aged StD patients. Methods Two cohorts of StD patients, young and middle-aged, (n = 57) and matched controls (n = 76) underwent voxel-based morphometry (VBM). Results VBM analysis found that: 1) compared with healthy controls, StD patients showed decreased gray matter volume (GMV) in the bilateral globus pallidus and precentral gyrus, as well as increased GMV in the left thalamus and right rostral anterior cingulate cortex/medial prefrontal cortex; 2) there is a significant association between Center for Epidemiological Studies Depression Scale scores and the bilateral globus pallidus (negative) and left thalamus (positive); 3) there is no interaction between age (young vs. middle-age) and group (StD vs. controls). Conclusions Our findings indicate significant VBM brain changes in both young and middle-aged individuals with StD. Individuals with StD, regardless of age, may share common neural characteristics.
NeuroImage | 2017
Minyoung Jung; Yiheng Tu; Courtney Lang; Ana Ortiz; Joel Park; Kristen Jorgenson; Xuejun Kong; Jian Kong
ABSTRACT Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by atypical social communication and repetitive behaviors. In this study, we applied a multimodal approach to investigate brain structural connectivity, resting state activity, and surface area, as well as their associations with the core symptoms of ASD. Data from forty boys with ASD (mean age, 11.5 years; age range, 5.5–19.5) and forty boys with typical development (TD) (mean age, 12.3; age range, 5.8–19.7) were extracted from the Autism Brain Imaging Data Exchange II (ABIDE II) for data analysis. We found significantly decreased structural connectivity, resting state brain activity, and surface area at the occipital cortex in boys with ASD compared to boys with TD. In addition, we found that resting state brain activity and surface area in the lateral occipital cortex was negatively correlated with communication scores in boys with ASD. Our results suggest that decreased structural connectivity and resting‐state brain activity in the occipital cortex may impair the integration of verbal and non‐verbal communication cues in boys with ASD, thereby impacting their social development. HighlightsWe applied a multimodal approach to investigate the neuropathology of ASD.ASD showed decreased fALFF and surface area at the occipital cortex.ASD is associated with decreased FA and track length in left CCG and right UNC.Functional and structural changes were associated with ASD communication scores.
European Journal of Pain | 2017
Natalia Egorova; Joel Park; Jian-Qiang Kong
Visual cue conditioning is a valuable experimental paradigm to investigate placebo and nocebo effects in pain. However, little attention has been paid to the cues themselves and potential variability of effects (their quantity and quality) stemming from the choice of stimuli. Yet, this seemingly methodological question has important implications for the interpretation of experimental findings in terms of their significance for clinical practice.
Frontiers in Psychiatry | 2018
Jian Kong; Jiliang Fang; Joel Park; Shaoyuan Li; Peijing Rong
Depression is a highly prevalent disorder, and its treatment is far from satisfactory. There is an urgent need to develop a new treatment for depression. Although still at its early stage, transcutaneous auricular vagus nerve stimulation (taVNS) has shown promising potential for treating depression. In this article, we first summarize the results of clinical studies on the treatment effect of taVNS on depression. Then, we re-analyze a previous study to identify the specific symptoms taVNS can relieve as indicated by subscores of the 24-item Hamilton Depression Scale in patients with depression. We found that taVNS can significantly reduce multiple symptoms of depression patients, including anxiety, psychomotor retardation, sleep disturbance, and hopelessness. Next, we pose several hypotheses on the mechanism of taVNS treatment of depression, including directly and indirectly modulating the activity and connectivity of key brain regions involved in depression and mood regulation; inhibiting neuro-inflammatory sensitization; modulating hippocampal neurogenesis; and regulating the microbiome–brain–gut axis. Finally, we outline current challenges and lay out the future directions of taVNS treatment of depression, which include (1) intensively comparing stimulation parameters and “dose effect” (treatment frequency and duration) to maximize the treatment effect of taVNS; (2) exploring the effect of taVNS on disorders comorbid with depression (such as chronic pain disorders, cardiovascular disorder, and autism) to provide new “two-for-one” treatment approaches for patients with these disorders; and (3) applying multiple scale methods to explore the underlying mechanism of taVNS.
Brain Stimulation | 2018
Yiheng Tu; Jiliang Fang; Jin Cao; Zengjian Wang; Joel Park; Kristen Jorgenson; Courtney Lang; Jun Liu; Guolei Zhang; Yanping Zhao; Bing Zhu; Peijing Rong; Jian Kong
BACKGROUND Major depression is the fourth leading cause of disability worldwide and poses a socioeconomic burden worldwide. Transcutaneous vagus nerve stimulation (tVNS) is a promising noninvasive clinical device that may reduce the severity of major depression. However, the neural mechanism underlying continuous tVNS has not yet been elucidated. OBJECTIVE We aimed to explore the effect of hypothalamic subregion functional connectivity (FC) changes during continuous tVNS treatment on major depressive disorder (MDD) patients and to identify the potential biomarkers for treatment outcomes. METHODS Forty-one mild to moderate MDD patients were recruited and received either real or sham tVNS treatment for 4 weeks. We used a seed-to-whole brain approach to estimate the FC changes of hypothalamic subregions and their surrounding control areas during continuous tVNS treatment and explored their association with clinical outcome changes after 4 weeks of treatment. RESULTS Of the thirty-six patients that completed the study, those in the tVNS group had significantly lower scores on the 24-item Hamilton Depression (HAM-D) Rating Scale compared to the sham tVNS group after 4 weeks of treatment. The FC between the bilateral medial hypothalamus (MH) and rostral anterior cingulate cortex (rACC) was significantly decreased during tVNS but not during sham tVNS. The strength of this FC was significantly correlated with HAM-D improvements after 4 weeks of tVNS. CONCLUSION The FC between the bilateral MH and rACC may serve as a potential biomarker for the tVNS state and predict treatment responses. Our results provide insights into the neural modulation mechanisms of continuous tVNS and reveal a potential therapeutic target for MDD patients.
Journal of Psychiatric Research | 2017
Zengjian Wang; Jiliang Fang; Jun Liu; Peijing Rong; Kristen Jorgenson; Joel Park; Courtney Lang; Yang Hong; Bing Zhu; Jian Kong
Transcutaneous vagus nerve stimulation (tVNS) may be a promising treatment for major depressive disorder (MDD). In this exploratory study, fMRI scans were acquired during continuous real or sham tVNS from 41 MDD patients. Then, all patients received real or sham tVNS treatment for four weeks. We investigated the functional connectivity (FC) of the nucleus accumbens (NAc) at different frequency bands during real and sham tVNS and explored their associations with depressive symptom changes after one month of treatment. The results revealed: 1) significant positive FCs between the NAc and surrounding areas including the putamen, caudate, and distinct areas of the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC) during continuous real and sham tVNS; 2) compared with sham tVNS, real tVNS increased the FC between the left NAc and bilateral MPFC/rACC in the slow-5 band (0.008-0.027) and between the right NAc and left insula, occipital gyrus, and right lingual/fusiform gyrum in the typical low band (0.008-0.09); and 3) the FC of the NAc-MPFC/rACC during real tVNS showed a negative association with Hamilton Depression Rating Scale (HAMD) score changes in the real tVNS group after one month of treatment, but not in the sham group. Our findings demonstrate that tVNS can modulate low frequency intrinsic FC among key brain regions involved in reward and motivation processing and provide insights into the brain mechanism underlying tVNS treatment of MDD.