Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel Petersson is active.

Publication


Featured researches published by Joel Petersson.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria

Malin E. V. Johansson; Mia Phillipson; Joel Petersson; Anna Velcich; Lena Holm; Gunnar C. Hansson

We normally live in symbiosis with ∼1013 bacteria present in the colon. Among the several mechanisms maintaining the bacteria/host balance, there is limited understanding of the structure, function, and properties of intestinal mucus. We now demonstrate that the mouse colonic mucus consists of two layers extending 150 μm above the epithelial cells. Proteomics revealed that both of these layers have similar protein composition, with the large gel-forming mucin Muc2 as the major structural component. The inner layer is densely packed, firmly attached to the epithelium, and devoid of bacteria. In contrast, the outer layer is movable, has an expanded volume due to proteolytic cleavages of the Muc2 mucin, and is colonized by bacteria. Muc2−/− mice have bacteria in direct contact with the epithelial cells and far down in the crypts, explaining the inflammation and cancer development observed in these animals. These findings show that the Muc2 mucin can build a mucus barrier that separates bacteria from the colon epithelia and suggest that defects in this mucus can cause colon inflammation.


Nature Chemical Biology | 2009

Nitrate and nitrite in biology, nutrition and therapeutics

Jon O. Lundberg; Mark T. Gladwin; Amrita Ahluwalia; Nigel Benjamin; Nathan S. Bryan; Anthony R. Butler; Pedro Cabrales; Angela Fago; Martin Feelisch; Peter C. Ford; Bruce A. Freeman; Michael P. Frenneaux; Joel M. Friedman; Malte Kelm; Christopher G. Kevil; Daniel B. Kim-Shapiro; Andrey V. Kozlov; Jack R. Lancaster; David J. Lefer; Kenneth E.L. McColl; Kenneth R. McCurry; Rakesh P. Patel; Joel Petersson; Tienush Rassaf; V. P. Reutov; George B. Richter-Addo; Alan N. Schechter; Sruti Shiva; Koichiro Tsuchiya; Ernst E. van Faassen

Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent 2-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm.


Nature Chemical Biology | 2008

A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis

Emmelie Å. Jansson; Liyue Huang; Ronny Malkey; Mirco Govoni; Carina Nihlén; Annika Olsson; Margareta Stensdotter; Joel Petersson; Lena Holm; Eddie Weitzberg; Jon O. Lundberg

Inorganic nitrite (NO(2)(-)) is emerging as a regulator of physiological functions and tissue responses to ischemia, whereas the more stable nitrate anion (NO(3)(-)) is generally considered to be biologically inert. Bacteria express nitrate reductases that produce nitrite, but mammals lack these specific enzymes. Here we report on nitrate reductase activity in rodent and human tissues that results in formation of nitrite and nitric oxide (NO) and is attenuated by the xanthine oxidoreductase inhibitor allopurinol. Nitrate administration to normoxic rats resulted in elevated levels of circulating nitrite that were again attenuated by allopurinol. Similar effects of nitrate were seen in endothelial NO synthase-deficient and germ-free mice, thereby excluding vascular NO synthase activation and bacteria as the source of nitrite. Nitrate pretreatment attenuated the increase in systemic blood pressure caused by NO synthase inhibition and enhanced blood flow during post-ischemic reperfusion. Our findings suggest a role for mammalian nitrate reduction in regulation of nitrite and NO homeostasis.


Journal of Clinical Investigation | 2004

Nitrite in saliva increases gastric mucosal blood flow and mucus thickness

Håkan Björne; Joel Petersson; Mia Phillipson; Eddie Weitzberg; Lena Holm; Jon O. Lundberg

Salivary nitrate from dietary or endogenous sources is reduced to nitrite by oral bacteria. In the acidic stomach, nitrite is further reduced to NO and related compounds, which have potential biological activity. We used an in vivo rat model as a bioassay to test effects of human saliva on gastric mucosal blood flow and mucus thickness. Gastric mucosal blood flow and mucus thickness were measured after topical administration of human saliva in HCl. The saliva was collected either after fasting (low in nitrite) or after ingestion of sodium nitrate (high in nitrite). In additional experiments, saliva was exchanged for sodium nitrite at different doses. Mucosal blood flow was increased after luminal application of nitrite-rich saliva, whereas fasting saliva had no effects. Also, mucus thickness increased in response to nitrite-rich saliva. The effects of nitrite-rich saliva were similar to those of topically applied sodium nitrite. Nitrite-mediated effects were associated with generation of NO and S-nitrosothiols. In addition, pretreatment with an inhibitor of guanylyl cyclase markedly inhibited nitrite-mediated effects on blood flow. We conclude that nitrite-containing human saliva given luminally increases gastric mucosal blood flow and mucus thickness in the rat. These effects are likely mediated through nonenzymatic generation of NO via activation of guanylyl cyclase. This supports a gastroprotective role of salivary nitrate/nitrite.


PLOS ONE | 2010

Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model.

Malin E. V. Johansson; Jenny K. Gustafsson; Karolina E. Sjöberg; Joel Petersson; Lena Holm; Henrik Sjövall; Gunnar C. Hansson

Background Protection of the large intestine with its enormous amount of commensal bacteria is a challenge that became easier to understand when we recently could describe that colon has an inner attached mucus layer devoid of bacteria (Johansson et al. (2008) Proc. Natl. Acad. Sci. USA 105, 15064–15069). The bacteria are thus kept at a distance from the epithelial cells and lack of this layer, as in Muc2-null mice, allow bacteria to contact the epithelium. This causes colitis and later on colon cancer, similar to the human disease Ulcerative Colitis, a disease that still lacks a pathogenetic explanation. Dextran Sulfate (DSS) in the drinking water is the most widely used animal model for experimental colitis. In this model, the inflammation is observed after 3–5 days, but early events explaining why DSS causes this has not been described. Principal Findings When mucus formed on top of colon explant cultures were exposed to 3% DSS, the thickness of the inner mucus layer decreased and became permeable to 2 µm fluorescent beads after 15 min. Both DSS and Dextran readily penetrated the mucus, but Dextran had no effect on thickness or permeability. When DSS was given in the drinking water to mice and the colon was stained for bacteria and the Muc2 mucin, bacteria were shown to penetrate the inner mucus layer and reach the epithelial cells already within 12 hours, long before any infiltration of inflammatory cells. Conclusion DSS thus causes quick alterations in the inner colon mucus layer that makes it permeable to bacteria. The bacteria that reach the epithelial cells probably trigger an inflammatory reaction. These observations suggest that altered properties or lack of the inner colon mucus layer may be an initial event in the development of colitis.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Importance and regulation of the colonic mucus barrier in a mouse model of colitis

Joel Petersson; Olof Schreiber; Gunnar C. Hansson; Sandra J. Gendler; Anna Velcich; Jon O. Lundberg; Stefan Roos; Lena Holm; Mia Phillipson

The colonic mucus layer serves as an important barrier and prevents colonic bacteria from invading the mucosa and cause inflammation. The regulation of colonic mucus secretion is poorly understood. The aim of this study was to investigate the role of the mucus barrier in induction of colitis. Furthermore, regulation of mucus secretion by luminal bacterial products was studied. The colon of anesthetized Muc2(-/-), Muc1(-/-), wild-type (wt), and germ-free mice was exteriorized, the mucosal surface was visualized, and mucus thickness was measured with micropipettes. Colitis was induced by DSS (dextran sodium sulfate, 3%, in drinking water), and disease activity index (DAI) was assessed daily. The colonic mucosa of germ-free and conventionally housed mice was exposed to the bacterial products LPS (lipopolysaccharide) and PGN (peptidoglycan). After DSS induction of colitis, the thickness of the firmly adherent mucus layer was significantly thinner after 5 days and onward, which paralleled the increment of DAI. Muc2(-/-) mice, which lacked firmly adherent mucus, were predisposed to colitis, whereas Muc1(-/-) mice were protected with significantly lower DAI by DSS compared with wt mice. The mucus barrier increased in Muc1(-/-) mice in response to DSS, whereas significantly fewer T cells were recruited to the inflamed colon. Mice housed under germ-free conditions had an extremely thin adherent colonic mucus layer, but when exposed to bacterial products (PGN or LPS) the thickness of the adherent mucus layer was quickly restored to levels observed in conventionally housed mice. This study demonstrates a correlation between decreasing mucus barrier and increasing clinical symptoms during onset of colitis. Mice lacking colonic mucus (Muc2(-/-)) were hypersensitive to DSS-induced colitis, whereas Muc1(-/-) were protected, probably through the ability to increase the mucus barrier but also by decreased T cell recruitment to the afflicted site. Furthermore, the ability of bacteria to regulate the thickness of the colonic mucus was demonstrated.


Free Radical Biology and Medicine | 2009

Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash.

Joel Petersson; Mattias Carlström; Olof Schreiber; Mia Phillipson; Gustaf Christoffersson; A Jägare; Stefan Roos; Emmelie Å. Jansson; A. Erik G. Persson; Jon O. Lundberg; Lena Holm

Recently, it has been suggested that the supposedly inert nitrite anion is reduced in vivo to form bioactive nitric oxide with physiological and therapeutic implications in the gastrointestinal and cardiovascular systems. Intake of nitrate-rich food such as vegetables results in increased levels of circulating nitrite in a process suggested to involve nitrate-reducing bacteria in the oral cavity. Here we investigated the importance of the oral microflora and dietary nitrate in regulation of gastric mucosal defense and blood pressure. Rats were treated twice daily with a commercial antiseptic mouthwash while they were given nitrate-supplemented drinking water. The mouthwash greatly reduced the number of nitrate-reducing oral bacteria and as a consequence, nitrate-induced increases in gastric NO and circulating nitrite levels were markedly reduced. With the mouthwash the observed nitrate-induced increase in gastric mucus thickness was attenuated and the gastroprotective effect against an ulcerogenic compound was lost. Furthermore, the decrease in systemic blood pressure seen during nitrate supplementation was now absent. These results suggest that oral symbiotic bacteria modulate gastrointestinal and cardiovascular function via bioactivation of salivary nitrate. Excessive use of antiseptic mouthwashes may attenuate the bioactivity of dietary nitrate.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

The gastric mucus layers: constituents and regulation of accumulation

Mia Phillipson; Malin E. V. Johansson; Johanna Henriksnäs; Joel Petersson; Sandra J. Gendler; Stellan Sandler; A. Erik G. Persson; Gunnar C. Hansson; Lena Holm

The mucus layer continuously covering the gastric mucosa consists of a loosely adherent layer that can be easily removed by suction, leaving a firmly adherent mucus layer attached to the epithelium. These two layers exhibit different gastroprotective roles; therefore, individual regulation of thickness and mucin composition were studied. Mucus thickness was measured in vivo with micropipettes in anesthetized mice [isoflurane; C57BL/6, Muc1-/-, inducible nitric oxide synthase (iNOS)-/-, and neuronal NOS (nNOS)-/-] and rats (inactin) after surgical exposure of the gastric mucosa. The two mucus layers covering the gastric mucosa were differently regulated. Luminal administration of PGE(2) increased the thickness of both layers, whereas luminal NO stimulated only firmly adherent mucus accumulation. A new gastroprotective role for iNOS was indicated since iNOS-deficient mice had thinner firmly adherent mucus layers and a lower mucus accumulation rate, whereas nNOS did not appear to be involved in mucus secretion. Downregulation of gastric mucus accumulation was observed in Muc1-/- mice. Both the firmly and loosely adherent mucus layers consisted of Muc5ac mucins. In conclusion, this study showed that, even though both the two mucus layers covering the gastric mucosa consist of Muc5ac, they are differently regulated by luminal PGE(2) and NO. A new gastroprotective role for iNOS was indicated since iNOS-/- mice had a thinner firmly adherent mucus layer. In addition, a regulatory role of Muc1 was demonstrated since downregulation of gastric mucus accumulation was observed in Muc1-/- mice.


Journal of Crohns & Colitis | 2014

Treating beyond symptoms with a view to improving patient outcomes in inflammatory bowel diseases.

William J. Sandborn; Stephen B. Hanauer; Gert Van Assche; Julián Panés; Stephanie R. Wilson; Joel Petersson; Remo Panaccione

BACKGROUND AND AIMS Treatment goals in inflammatory bowel diseases are evolving beyond the control of symptoms towards the tight control of objectively-measured gastrointestinal inflammation. This review discusses the progress and challenges in adopting a treat-to-target approach in inflammatory bowel diseases. METHODS Evidence from the literature that highlights current thinking in terms of treating-to-target in patients with inflammatory bowel diseases is discussed. RESULTS Monitoring for objective evidence of inflammation using endoscopy, cross-sectional imaging or laboratory biomarkers may be a useful approach in inflammatory bowel diseases; however, setting the appropriate treatment goal remains a challenge. Deep remission (a composite of symptom control and mucosal healing) may now be a realistic target in Crohns disease; however, it remains to be proven that achieving deep remission will modify the long-term disease course. Assessing prognosis at an early stage of the disease course is essential for the development of an appropriate management plan, with the rationale of adapting treatment to disease severity. An algorithm has been proposed for the treatment of early Crohns disease that involves early treatment with immunosuppressants and tumour necrosis factor antagonists, in the hope of preventing structural bowel damage. CONCLUSIONS Treating beyond symptoms will require a clear management plan influenced by disease severity at presentation, clinical and biological prognostic factors, achievement and maintenance of clinical and biological remission and pharmacoeconomics.


Journal of Crohns & Colitis | 2014

Future directions in inflammatory bowel disease management

Geert R. D'Haens; R. Balfour Sartor; Mark S. Silverberg; Joel Petersson; Paul Rutgeerts

BACKGROUND AND AIMS Clinical management of inflammatory bowel diseases (IBD), new treatment modalities and the potential impact of personalised medicine remain topics of intense interest as our understanding of the pathophysiology of IBD expands. METHODS Potential future strategies for IBD management are discussed, based on recent preclinical and clinical research. RESULTS A top-down approach to medical therapy is increasingly being adopted for patients with risk factors for severe inflammation or an unfavourable disease course in an attempt to halt the inflammatory process as early as possible, prevent complications and induce mucosal healing. In the future, biological therapies for IBD are likely to be used more selectively based on personalised benefit/risk assessment, determined through reliable biomarkers and tissue signatures, and will probably be optimised throughout the course of treatment. Biologics with different mechanisms of action will be available; when one drug fails, patients will be able to switch to another and even combination biologics may become a reality. The role of biotherapeutic products that are similar to currently licensed biologics in terms of quality, safety and efficacy - i.e. biosimilars - is at an early stage and requires further experience. Other therapeutic strategies may involve manipulation of the microbiome using antibiotics, probiotics, prebiotics, diet and combinations of all these approaches. Faecal microbiota transplantation is also a potential option in IBD although controlled data are lacking. CONCLUSIONS The future of classifying, prognosticating and managing IBD involves an outcomes-based approach to identify biomarkers reflecting various biological processes that can be matched with clinically important endpoints.

Collaboration


Dive into the Joel Petersson's collaboration.

Top Co-Authors

Avatar

Anne M. Robinson

Southampton General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lena Holm

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Reinisch

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Travis

John Radcliffe Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge