Joel R. Tolman
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joel R. Tolman.
Quarterly Reviews of Biophysics | 2000
James H. Prestegard; Hashim M. Al-Hashimi; Joel R. Tolman
2. Theoretical treatment of dipolar interactions 376 2.1 Anisotropic interactions as probes of macromolecular structure and dynamics 376 2.1.1 The dipolar interaction 376 2.1.2 Averaging in the solution state 377 2.2 Ordering of a rigid body 377 2.2.1 The Saupe order tensor 378 2.2.2 Orientational probability distribution function 380 2.2.3 The generalized degree of order 380 2.3 Molecular structure and internal dynamics 381
Current Opinion in Structural Biology | 2001
Joel R. Tolman
The introduction of residual dipolar coupling methodology has increased the scope of structural biological problems that can be addressed by NMR spectroscopy. Conformational changes, the relative orientation of domains, and intermolecular complexes can now be characterized accurately and rapidly using NMR. The development of residual dipolar coupling methodology for the rapid recognition of homologous protein folds and for studies of submillisecond timescale dynamics has also seen considerable progress.
Journal of Biomolecular NMR | 2008
Ke Ruan; Kathryn B. Briggman; Joel R. Tolman
The straightforward interpretation of solution state residual dipolar couplings (RDCs) in terms of internuclear vector orientations generally requires prior knowledge of the alignment tensor, which in turn is normally estimated using a structural model. We have developed a protocol which allows the requirement for prior structural knowledge to be dispensed with as long as RDC measurements can be made in three independent alignment media. This approach, called Rigid Structure from Dipolar Couplings (RSDC), allows vector orientations and alignment tensors to be determined de novo from just three independent sets of RDCs. It is shown that complications arising from the existence of multiple solutions can be overcome by careful consideration of alignment tensor magnitudes in addition to the agreement between measured and calculated RDCs. Extensive simulations as well applications to the proteins ubiquitin and Staphylococcal protein GB1 demonstrate that this method can provide robust determinations of alignment tensors and amide N–H bond orientations often with better than 10° accuracy, even in the presence of modest levels of internal dynamics.
Journal of Biomolecular NMR | 2004
Julien Wist; Dominique P. Frueh; Joel R. Tolman; Geoffrey Bodenhausen
A new experiment allows the identification of residues that feature slow conformational exchange in macromolecules. Rotations about dihedral angles that are slower than the global correlation time τc cause a modulation of the isotropic chemical shifts of the nuclei. If these fluctuations are correlated they induce a differential line broadening between three-spin single-quantum and triple-quantum coherences involving three nuclei such as the carbonyl C′, the neighbouring amide nitrogen N and the amide proton HN belonging to a pair of consecutive amino acids. A cross-correlated relaxation rate RCS/CSC′N can be determined that corresponds to the sum of the isotropic and anisotropic contributions to the chemical shift modulations of the carbonyl carbon and nitrogen nuclei. Only the isotropic contributions depend on the pulse repetition rate of a multiple-refocusing sequence. An attenuation of the relaxation rate with increasing pulse repetition rate can therefore be attributed to slow motions. The asparagine N25 residue of ubiquitin, located in the first α-helix, is shown to feature significant slow conformational exchange.
Proteins | 2010
Tingting Ju; William E. Bocik; Ananya Majumdar; Joel R. Tolman
Ube2g2 is an E2 enzyme which functions as part of the endoplasmic reticulum‐associated degradation (ERAD) pathway responsible for identification and degradation of misfolded proteins in the endoplasmic reticulum. In tandem with a cognate E3 ligase, Ube2g2 assembles K48‐linked polyubiquitin chains and then transfers them to substrate, leading ultimately to proteasomal degradation of the polyubiquitin‐tagged substrate. We report here the solution structure and backbone dynamics of Ube2g2 solved by nuclear magnetic resonance spectroscopy. Although the solution structure agrees well with crystallographic structures for the E2 core, catalytically important loops (encompassing residues 95–107 and 130–135) flanking the active site cysteine are poorly defined. 15N spin relaxation and residual dipolar coupling analysis directly demonstrates that these two loops are highly dynamic in solution. These results suggest that Ube2g2 requires one or more of its protein partners, such as cognate E3, acceptor ubiquitin substrate or thiolester‐linked donor ubiquitin, to assume its catalytically relevant conformation. Within the NMR structural ensemble, interactions were observed between His94 and the highly mobile loop residues Asp98 and Asp99, supporting a possible role for His94 as a general base activated by the carboxylate side‐chains of Asp98 or Asp99. Proteins 2010.
Proteins | 2009
Chapman M. Wright; Ananya Majumdar; Joel R. Tolman; Marc Ostermeier
RG13 is a 72 kDa engineered allosteric enzyme comprised of a fusion between maltose binding protein (MBP) and TEM1 β‐lactamase (BLA) for which maltose is a positive effector of BLA activity. We have used NMR spectroscopy to acquire [15N, 1H]‐TROSY‐HSQC spectra of RG13 in the presence and absence of maltose. The RG13 chemical shift data was compared to the published chemical shift data of MBP and BLA. The spectra are consistent with the expectation that the individual domain structures of RG13 are substantially conserved from MBP and BLA. Differences in the spectra are consistent with the fusion geometry of MBP and BLA and the maltose‐dependent differences in the kinetics of RG13 enzyme activity. In particular, the spectra provide evidence for a maltose‐dependent conformational change of a key active site glutamate involved in deacylation of the enzyme‐substrate intermediate. Proteins 2010.
Annual reports on NMR spectroscopy | 2003
Joel R. Tolman; Hashim M. Al-Hashimi
Abstract Due to their exquisite sensitivity to bond vector orientations and distances, residual dipolar couplings are emerging as a powerful NMR methodology for probing the conformational dynamics of biomolecules. The global organization of multi-domain proteins and complexes can now be accurately established in solution, providing insights into distinguishing structural features under different solution environments or with respect to the solid state. Collective motions of domains or secondary structural elements occurring over sub-millisecond timescales, which have resisted characterization using traditional techniques, can now be directly probed using suitable residual dipolar coupling-based techniques. Advances in methods for achieving molecular alignment and data interpretation are enabling characterization of motions with increasingly high resolution. There are now approaches for determining residual dipolar coupling-based generalized order parameters, which can complement their spin relaxation counterparts due to their broader timescale sensitivity. The existence of multiple conformations can now more easily be detected and the residual dipolar coupling data used to confirm or refute models for the conformational fluctuations. It can be expected that future biomolecular NMR studies will increasingly benefit from residual dipolar coupling applications which can recognize and account for molecular flexibility.
Journal of Biological Chemistry | 2011
William E. Bocik; Aroop Sircar; Jeffrey J. Gray; Joel R. Tolman
Ube2g2 is a human ubiquitin conjugating (E2) enzyme involved in the endoplasmic reticulum-associated degradation pathway, which is responsible for the identification and degradation of unfolded and misfolded proteins in the endoplasmic reticulum compartment. The Ube2g2-specific role is the assembly of Lys-48-linked polyubiquitin chains, which constitutes a signal for proteasomal degradation when attached to a substrate protein. NMR chemical shift perturbation and paramagnetic relaxation enhancement approaches were employed to characterize the binding interaction between Ube2g2 and ubiquitin, Lys-48-linked diubiquitin, and Lys-63-linked diubiquitin. Results demonstrate that ubiquitin binds to Ube2g2 with an affinity of 90 μm in two different orientations that are rotated by 180° in models generated by the RosettaDock modeling suite. The binding of Ube2g2 to Lys-48- and Lys-63-linked diubiquitin is primarily driven by interactions with individual ubiquitin subunits, with a clear preference for the subunit containing the free Lys-48 or Lys-63 side chain (i.e. the distal subunit). This preference is particularly striking in the case of Lys-48-linked diubiquitin, which exhibits an ∼3-fold difference in affinities between the two ubiquitin subunits. This difference can be attributed to the partial steric occlusion of the subunit whose Lys-48 side chain is involved in the isopeptide linkage. As such, these results suggest that Lys-48-linked polyubiquitin chains may be designed to bind certain proteins like Ube2g2 such that the terminal ubiquitin subunit carrying the reactive Lys-48 side chain can be positioned properly for chain elongation regardless of chain length.
Journal of Biomolecular NMR | 2010
Luke Arbogast; Ananya Majumdar; Joel R. Tolman
A pair of 3D HNCO-based experiments have been developed with the aim of optimizing the precision of measurement of 1JNH couplings. Both pulse sequences record 1JNH coupling evolution during the entire constant time interval that 15N magnetization is dephasing or rephasing with respect to the directly bonded 13C′ nucleus, with 15N13C′ multiple quantum coherence maintained during the 13C′ evolution period. The first experiment, designed for smaller proteins, produces an apparent doubling of the 1JNH coupling without any accompanying increases in line width. The second experiment is a J-scaled TROSY-HNCO experiment in which the 1JNH coupling is measured by frequency difference between resonances offset symmetrically about the position of the downfield component of the 15N doublet (i.e. the TROSY resonance). This experiment delivers significant gains in precision of 1JNH coupling measurement compared to existing J-scaled TROSY-HNCO experiments. With the proper choice of acquisition parameters and sufficient sensitivity to acquire a 3D TROSY-HNCO experiment, it is shown that 1JNH couplings can be measured with a precision which approaches or exceeds the precision of measurement with which the frequency of the TROSY resonance itself can be determined.
Nucleic Acids Research | 2015
Pankaj Kumar; Pearl Magala; Kathryn Geiger-Schuller; Ananya Majumdar; Joel R. Tolman; Cynthia Wolberger
Rad6 is a yeast E2 ubiquitin conjugating enzyme that monoubiquitinates histone H2B in conjunction with the E3, Bre1, but can non-specifically modify histones on its own. We determined the crystal structure of a Rad6∼Ub thioester mimic, which revealed a network of interactions in the crystal in which the ubiquitin in one conjugate contacts Rad6 in another. The region of Rad6 contacted is located on the distal face of Rad6 opposite the active site, but differs from the canonical E2 backside that mediates free ubiquitin binding and polyubiquitination activity in other E2 enzymes. We find that free ubiquitin interacts weakly with both non-canonical and canonical backside residues of Rad6 and that mutations of non-canonical residues have deleterious effects on Rad6 activity comparable to those observed to mutations in the canonical E2 backside. The effect of non-canonical backside mutations is similar in the presence and absence of Bre1, indicating that contacts with non-canonical backside residues govern the intrinsic activity of Rad6. Our findings shed light on the determinants of intrinsic Rad6 activity and reveal new ways in which contacts with an E2 backside can regulate ubiquitin conjugating activity.