Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel Ramjist is active.

Publication


Featured researches published by Joel Ramjist.


Journal of Biomedical Optics | 2014

Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia

Kyle H. Y. Cheng; Adrian Mariampillai; Kenneth K. C. Lee; Barry Vuong; Timothy W.H. Luk; Joel Ramjist; E. Anne Curtis; Henry R. Jakubovic; Peter J. Kertes; Michelle Letarte; Marie E. Faughnan; Victor X. D. Yang

Speckle statistics of flowing scatterers have been well documented in the literature. Speckle variance optical coherence tomography exploits the large variance values of intensity changes in time caused mainly by the random backscattering of light resulting from translational activity of red blood cells to map out the microvascular networks. A method to map out the microvasculature malformation of skin based on the time-domain histograms of individual pixels is presented with results obtained from both normal skin and skin containing vascular malformation. Results demonstrated that this method can potentially map out deeper blood vessels and enhance the visualization of microvasculature in low signal regions, while being resistant against motion (e.g., patient tremor or internal reflex movements). The overall results are manifested as more uniform en face projection maps of microvessels. Potential applications include clinical imaging of skin vascular abnormalities and wide-field skin angiography for the study of complex vascular networks.


Biomedical Optics Express | 2014

Evaluation of flow velocities after carotid artery stenting through split spectrum Doppler optical coherence tomography and computational fluid dynamics modeling

Barry Vuong; Helen Genis; Ronnie Wong; Joel Ramjist; Jamil Jivraj; Hamza Farooq; Cuiru Sun; Victor X. D. Yang

Hemodynamics plays a critical role in the development of atherosclerosis, specifically in regions of curved vasculature such as bifurcations exhibiting irregular blood flow profiles. Carotid atherosclerotic disease can be intervened by stent implantation, but this may result in greater alterations to local blood flow and consequently further complications. This study demonstrates the use of a variant of Doppler optical coherence tomography (DOCT) known as split spectrum DOCT (ssDOCT) to evaluate hemodynamic patterns both before and after stent implantation in the bifurcation junction in the internal carotid artery (ICA). Computational fluid dynamics (CFD) models were constructed to simulate blood velocity profiles and compared to the findings achieved through ssDOCT images. Both methods demonstrated noticeable alterations in hemodynamic patterns following stent implantation, with features such as slow velocity regions at the neck of the bifurcation and recirculation zones at the stent struts. Strong correlation between CFD models and ssDOCT images demonstrate the potential of ssDOCT imaging in the optimization of stent implantation in the clinical setting.


Optics Express | 2017

High speed, wide velocity dynamic range Doppler optical coherence tomography (Part V): Optimal utilization of multi-beam scanning for Doppler and speckle variance microvascular imaging

Chaoliang Chen; Kyle H. Y. Cheng; Raphael Jakubovic; Jamil Jivraj; Joel Ramjist; Ryan Deorajh; Wanrong Gao; Elizabeth Barnes; Lee Chin; Victor X. D. Yang

In this paper, a multi-beam scanning technique is proposed to optimize the microvascular images of human skin obtained with Doppler effect based methods and speckle variance processing. Flow phantom experiments were performed to investigate the suitability for combining multi-beam data to achieve enhanced microvascular imaging. To our surprise, the highly variable spot sizes (ranging from 13 to 77 μm) encountered in high numerical aperture multi-beam OCT system imaging the same target provided reasonably uniform Doppler variance and speckle variance responses as functions of flow velocity, which formed the basis for combining them to obtain better microvascular imaging without scanning penalty. In vivo 2D and 3D imaging of human skin was then performed to further demonstrate the benefit of combining multi-beam scanning to obtain improved signal-to-noise ratio (SNR) in microvascular imaging. Such SNR improvement can be as high as 10 dB. To our knowledge, this is the first demonstration of combining different spot size, staggered multiple optical foci scanning, to achieve enhanced SNR for blood flow OCT imaging.


Optics Express | 2016

Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications

Yize Huang; Jamil Jivraj; Jiaqi Zhou; Joel Ramjist; Ronnie Wong; Xijia Gu; Victor X. D. Yang

A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.


Biomedical Optics Express | 2015

Development of an integrated optical coherence tomography-gas nozzle system for surgical laser ablation applications: preliminary findings of in situ spinal cord deformation due to gas flow effects

Ronnie Wong; Jamil Jivraj; Barry Vuong; Joel Ramjist; Nicole A. Dinn; Cuiru Sun; Yize Huang; James Andrew Smith; Victor X. D. Yang

Gas assisted laser machining of materials is a common practice in the manufacturing industry. Advantages in using gas assistance include reducing the likelihood of flare-ups in flammable materials and clearing away ablated material in the cutting path. Current surgical procedures and research do not take advantage of this and in the case for resecting osseous tissue, gas assisted ablation can help minimize charring and clear away debris from the surgical site. In the context of neurosurgery, the objective is to cut through osseous tissue without damaging the underlying neural structures. Different inert gas flow rates used in laser machining could cause deformations in compliant materials. Complications may arise during surgical procedures if the dura and spinal cord are damaged by these deformations. We present preliminary spinal deformation findings for various gas flow rates by using optical coherence tomography to measure the depression depth at the site of gas delivery.


Proceedings of SPIE | 2015

Coaxial cavity injected OCT and fiber laser ablation system for real-time monitoring of ablative processes

Jamil Jivraj; Yize Huang; Ronnie Wong; Yi Lu; Barry Vuong; Joel Ramjist; Xijia Gu; Victor X. D. Yang

This study presents the design of a system used to monitor laser ablation in real-time using Optical Coherence Tomography (OCT). The design of the system involves a high-powered fiber laser (wavelength of 1064nm, 1kW peak power) being built directly into the sample arm of the OCT system (center wavelength 1310). It is shown that the OCT laser light and subsequent backscatter pass relatively unaffected through the fiber laser. Initial results are presented showing monitoring of the ablation process at a single point in real time using m-mode imaging.


Scientific Reports | 2018

High Speed, High Density Intraoperative 3D Optical Topographical Imaging with Efficient Registration to MRI and CT for Craniospinal Surgical Navigation

Raphael Jakubovic; Daipayan Guha; Shaurya Gupta; Michael T. Lu; Jamil Jivraj; Beau A. Standish; Michael K. Leung; Adrian Mariampillai; Kenneth Lee; Peter Siegler; Patryk Skowron; Hamza Farooq; Nhu Nguyen; Joseph Alarcon; Ryan Deorajh; Joel Ramjist; Michael J. Ford; Peter Howard; Nicolas Phan; Leo da Costa; Chris Heyn; Gamaliel Tan; Rajeesh George; David W. Cadotte; Todd G. Mainprize; Albert Yee; Victor X. D. Yang

Intraoperative image-guided surgical navigation for craniospinal procedures has significantly improved accuracy by providing an avenue for the surgeon to visualize underlying internal structures corresponding to the exposed surface anatomy. Despite the obvious benefits of surgical navigation, surgeon adoption remains relatively low due to long setup and registration times, steep learning curves, and workflow disruptions. We introduce an experimental navigation system utilizing optical topographical imaging (OTI) to acquire the 3D surface anatomy of the surgical cavity, enabling visualization of internal structures relative to exposed surface anatomy from registered preoperative images. Our OTI approach includes near instantaneous and accurate optical measurement of >250,000 surface points, computed at >52,000 points-per-second for considerably faster patient registration than commercially available benchmark systems without compromising spatial accuracy. Our experience of 171 human craniospinal surgical procedures, demonstrated significant workflow improvement (41 s vs. 258 s and 794 s, p < 0.05) relative to benchmark navigation systems without compromising surgical accuracy. Our advancements provide the cornerstone for widespread adoption of image guidance technologies for faster and safer surgeries without intraoperative CT or MRI scans. This work represents a major workflow improvement for navigated craniospinal procedures with possible extension to other image-guided applications.


Proceedings of SPIE | 2017

Design of a head mounted optical tracking system for surgical navigation (Conference Presentation)

Ryan Deorajh; Peter Morcos; Jamil Jivraj; Joel Ramjist; Victor X. D. Yang

When using surgical loupes and other head mounted surgical instruments for an extended period of time, many surgeons experience fatigue during the procedure, which results in a lot of pain in the neck and upper back. This is primarily due to the surgeon being subjected to long periods of uncomfortable positions, due to the design of the surgical instrument. To combat this issue, the surgeon is required to have a larger freedom of movement, which will reduce the fatigue in the affected areas, and allow the surgeon to comfortably operate for longer periods of time. The proposed design will incorporate an optical magnification system on a surgical head mounted display that will allow the surgeon to freely move their head and neck during the operation, while the optics are focused on the area of interest. The design will also include an infrared tracking system in order to acquire the field of view data, which will be used to control the optics. The reduction in neck pain will also be quantified using a clinically standardized numeric pain rating scale.


Proceedings of SPIE | 2017

The characterization of neural tissue ablation rate and corresponding heat affected zone of a 2 micron Tm3+ doped fiber laser(Conference Presentation)

Andrew J. Marques; Jamil Jivraj; Robnier Reyes; Joel Ramjist; Xijia J. Gu; Victor X. D. Yang

Tissue removal using electrocautery is standard practice in neurosurgery since tissue can be cut and cauterized simultaneously. Thermally mediated tissue ablation using lasers can potentially possess the same benefits but with increased precision. However, given the critical nature of the spine, brain, and nerves, the effects of direct photo-thermal interaction on neural tissue needs to be known, yielding not only high precision of tissue removal but also increased control of peripheral heat damage. The proposed use of lasers as a neurosurgical tool requires that a common ground is found between ablation rates and resulting peripheral heat damage. Most surgical laser systems rely on the conversion of light energy into heat resulting in both desirable and undesirable thermal damage to the targeted tissue. Classifying the distribution of thermal energy in neural tissue, and thus characterizing the extent of undesirable thermal damage, can prove to be exceptionally challenging considering its highly inhomogenous composition when compared to other tissues such as muscle and bone. Here we present the characterization of neural tissue ablation rate and heat affected zone of a 1.94 micron thulium doped fiber laser for neural tissue ablation. In-Vivo ablation of porcine cerebral cortex is performed. Ablation volumes are studied in association with laser parameters. Histological samples are taken and examined to characterize the extent of peripheral heat damage.


Proceedings of SPIE | 2017

Preliminary development of augmented reality systems for spinal surgery

Nhu Q. Nguyen; Joel Ramjist; Jamil Jivraj; Raphael Jakubovic; Ryan Deorajh; Victor X. D. Yang

Surgical navigation has been more actively deployed in open spinal surgeries due to the need for improved precision during procedures. This is increasingly difficult in minimally invasive surgeries due to the lack of visual cues caused by smaller exposure sites, and increases a surgeon’s dependence on their knowledge of anatomical landmarks as well as the CT or MRI images. The use of augmented reality (AR) systems and registration technologies in spinal surgeries could allow for improvements to techniques by overlaying a 3D reconstruction of patient anatomy in the surgeon’s field of view, creating a mixed reality visualization. The AR system will be capable of projecting the 3D reconstruction onto a field and preliminary object tracking on a phantom. Dimensional accuracy of the mixed media will also be quantified to account for distortions in tracking.

Collaboration


Dive into the Joel Ramjist's collaboration.

Top Co-Authors

Avatar

Victor X. D. Yang

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge