Joel T. Little
University of North Texas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joel T. Little.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011
W. David Knight; Joel T. Little; Flávia R. Carreño; Glenn M. Toney; Steven W. Mifflin; J. Thomas Cunningham
Chronic intermittent hypoxia (CIH) models repetitive bouts of arterial hypoxemia that occur in humans suffering from obstructive sleep apnea. CIH has been linked to persistent activation of arterial chemoreceptors and the renin-angiotensin system, which have been linked to chronic elevations of sympathetic nerve activity (SNA) and mean arterial pressure (MAP). Because Fos and FosB are transcription factors involved in activator protein (AP)-1 driven central nervous system neuronal adaptations, this study determined if CIH causes increased Fos or FosB staining in brain regions that regulate SNA and autonomic function. Male Sprague Dawley rats were instrumented with telemetry transmitters for continuous recording of MAP and heart rate (HR). Rats were exposed to continuous normoxia (CON) or to CIH for 8 h/day for 7 days. CIH increased MAP by 7-10 mmHg without persistently affecting HR. A separate group of rats was killed 1 day after 7 days of CIH for immunohistochemistry. CIH did not increase Fos staining in any brain region examined. Staining for FosB/ΔFosB was increased in the organum vasculosum of the lamina terminalis (CON: 9 ± 1; CIH: 34 ± 3 cells/section), subfornical organ (CON: 7 ± 2; CIH: 31 ± 3), median preoptic nucleus (CON 15 ± 1; CIH: 38 ± 3), nucleus of the solitary tract (CON: 9 ± 2; CIH: 28 ± 4), A5 (CON: 3 ± 1; CIH: 10 ± 1), and rostral ventrolateral medulla (CON: 5 ± 1; CIH: 17 ± 2). In the paraventricular nucleus, FosB/ΔFosB staining was located mainly in the dorsal and medial parvocellular subnuclei. CIH did not increase FosB/ΔFosB staining in caudal ventrolateral medulla or supraoptic nucleus. These data indicate that CIH induces an increase in FosB/ΔFosB in autonomic nuclei and suggest that AP-1 transcriptional regulation may contribute to stable adaptive changes that support chronically elevated SNA.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010
W. David Knight; Lisa L. Ji; Joel T. Little; J. Thomas Cunningham
This experiment tested the role of oropharyngeal and gastric afferents on hypothalamic activation in dehydrated rats instrumented with gastric fistulas and allowed to drink water or isotonic saline compared with euhydrated controls (CON). Rats were water-deprived for 48 h (48 WD) or 46 h WD with 2 h rehydration with water (46+W) or isotonic saline (46+S). 46+W and 46+S rats were given water with fistulas open (46+WO/46+SO, sham) or closed (46+WC/46+SC). Compared with CON, water deprivation increased and water rehydration decreased plasma osmolality, while sham rehydration had no effect. Water deprivation increased c-Fos staining in the lamina terminalis. However, none of the sham or rehydration treatments normalized c-Fos staining in the lamina terminalis. Analysis of AVP and c-Fos-positive neurons in the supraoptic nucleus (SON) revealed reduced colocalization in 46+WO and 46+SC rats compared with 48 WD and 46+SO rats. However, 46+WO and 46+SC rats had higher c-Fos staining in the SON than 46+WC or CON rats. Examination of c-Fos in the perinuclear zone (PNZ) revealed that sham and rehydrated rats had increased c-Fos staining to CON, while 48 WD and 46+SO rats had little or no c-Fos staining in this region. Thus, preabsorptive reflexes contribute to the regulation of AVP neurons in a manner independent of c-Fos expression in the lamina terminalis. Further, this reflex pathway may include inhibitory interneurons in the PNZ region surrounding the SON.
Journal of Neuroendocrinology | 2018
Kirthikaa Balapattabi; Joel T. Little; George Farmer; J. Thomas Cunningham
High salt loading (SL) is associated with inappropriate arginine vasopressin (AVP) release and increased mean arterial pressure. Previous work has shown that chronic high salt intake impairs baroreceptor inhibition of rat AVP neurones through brain‐derived neurotrophic factor (BDNF) dependent activation of tyrosine receptor kinase B (TrkB) and down‐regulation of K+/Cl− co‐transporter KCC2. This mechanism diminishes the GABAA inhibition of AVP neurones in the supraoptic nucleus (SON) by increasing intracellular chloride. However, the source of BDNF leading to this ionic plasticity is unknown. In the present study, we used adeno‐associated viral vectors with short hairpin RNA against BDNF to test whether SON is the source of BDNF contributing to increased AVP release and elevated mean arterial pressure in high salt loaded rats. Virally mediated BDNF knockdown (shBDNF) in the SON of salt loaded rats significantly blocked the increases in BDNF mRNA and AVP heterogeneous RNA expression. The observed increase in the activation of TrkB receptor during salt loading is consistent with previous studies. Western blot analysis of SON punches revealed that tyrosine phosphorylation of TrkB (pTrkBY515) was significantly decreased in salt shBDNF rats compared to the salt scrambled (SCR) rats. Injections of shBDNF in the SON also significantly prevented the increase in plasma AVP concentration associated with salt loading. However, the salt loading induced increase in mean arterial pressure was not decreased with BDNF knockdown in the SON. Average daily fluid intake and urine output were significantly elevated in both salt SCR and salt shBDNF rats compared to the euhydrated controls. Daily average urine sodium concentration was significantly higher in shBDNF injected salt rats than the other groups. These findings indicate that BDNF produced in the SON contributes to the increased AVP secretion during high salt loading but not with respect to the subsequent increase in mean arterial pressure.
Archive | 2017
Kirthikaa Balapattabi; Joel T. Little; Martha Bachelor; J. Thomas Cunningham
Archive | 2017
George Farmer; Joel T. Little; Martha Bachelor; Tom Cunningham
Archive | 2016
George Farmer; Joel T. Little; Blayne Knapp; Tom Cunningham
Archive | 2016
Alexandria B Marciante; J. Thomas Cunningham; Joel T. Little
Archive | 2016
Miguel Rodriguez; Shuping Jia; Qiong Wu; Arthur G. Williams; Joel T. Little; Joseph T Cunningham; Steve Mifflin; Rong Ma; Yuan PhD, Bs, Joseph P
Archive | 2015
Eugene C. Fletcher; Angela Navarrete-Opazo; Gordon S. Mitchell; Ashwini Saxena; Joel T. Little; T. Prashant Nedungadi; J. Thomas Cunningham; Jason H. Mateika; Mohamad El-Chami; David Shaheen; Blake Ivers
Archive | 2015
Natalia Orolinova; Constancio González; Sara Yubero; Elena Olea; Maria Teresa Agapito; Teresa Gallego-Martin; Asunción Rocher; Kenta Yamamoto; Peter M. Lalley; Steve Mifflin; Ashwini Saxena; Joel T. Little; T. Prashant Nedungadi; J. Thomas Cunningham
Collaboration
Dive into the Joel T. Little's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs