Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel Yuen-Zhou is active.

Publication


Featured researches published by Joel Yuen-Zhou.


Journal of Physical Chemistry Letters | 2013

Does Coherence Enhance Transport in Photosynthesis

Ivan Kassal; Joel Yuen-Zhou; Saleh Rahimi-Keshari

Recent observations of coherence in photosynthetic complexes have led to the question of whether quantum effects can occur in vivo, not under femtosecond laser pulses but in incoherent sunlight and at steady state, and, if so, whether the coherence explains the high exciton transfer efficiency. We introduce the distinction between state coherence and process coherence and show that although some photosynthetic pathways are partially coherent processes, photosynthesis in nature proceeds through stationary states. This distinction allows us to rule out several mechanisms of transport enhancement in sunlight. In particular, although they are crucial for understanding exciton transport, neither wavelike motion nor microscopic coherence, on their own, enhance the efficiency. By contrast, two partially coherent mechanisms-ENAQT and supertransfer-can enhance transport even in sunlight and thus constitute motifs for the optimization of artificial sunlight harvesting. Finally, we clarify the importance of ultrafast spectroscopy in understanding incoherent processes.


Physical Review Letters | 2010

Time-Dependent Density Functional Theory for Open Quantum Systems with Unitary Propagation

Joel Yuen-Zhou; David Gabriel Tempel; César A. Rodríguez-Rosario; Alán Aspuru-Guzik

We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.


Journal of Chemical Physics | 2011

Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers

Joel Yuen-Zhou; Alán Aspuru-Guzik

Is it possible to infer the time evolving quantum state of a multichromophoric system from a sequence of two-dimensional electronic spectra (2D-ES) as a function of waiting time? Here we provide a positive answer for a tractable model system: a coupled dimer. After exhaustively enumerating the Liouville pathways associated to each peak in the 2D-ES, we argue that by judiciously combining the information from a series of experiments varying the polarization and frequency components of the pulses, detailed information at the amplitude level about the input and output quantum states at the waiting time can be obtained. This possibility yields a quantum process tomography (QPT) of the single-exciton manifold, which completely characterizes the open quantum system dynamics through the reconstruction of the process matrix. In this manuscript, we present the general theory as well as specific and numerical results for a homodimer, for which we prove that signals stemming from coherence to population transfer and vice versa vanish upon isotropic averaging, therefore, only allowing for a partial QPT in such case. However, this fact simplifies the spectra, and it follows that only two polarization controlled experiments (and no pulse-shaping requirements) suffice to yield the elements of the process matrix, which survive under isotropic averaging. Redundancies in the 2D-ES amplitudes allow for the angle between the two site transition dipole moments to be self-consistently obtained, hence simultaneously yielding structural and dynamical information of the dimer. Model calculations are presented, as well as an error analysis in terms of the angle between the dipoles and peak amplitude extraction. In the second article accompanying this study, we numerically exemplify the theory for heterodimers and carry out a detailed error analysis for such case. This investigation reveals an exciting quantum information processing (QIP) approach to spectroscopic experiments of excitonic systems, and hence, bridges an important gap between theoretical studies on excitation energy transfer from the QIP standpoint and experimental methods to study such systems in the chemical physics community.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy

Joel Yuen-Zhou; Jacob J. Krich; Masoud Mohseni; Alán Aspuru-Guzik

The description of excited state dynamics in energy transfer systems constitutes a theoretical and experimental challenge in modern chemical physics. A spectroscopic protocol that systematically characterizes both coherent and dissipative processes of the probed chromophores is desired. Here, we show that a set of two-color photon-echo experiments performs quantum state tomography (QST) of the one-exciton manifold of a dimer by reconstructing its density matrix in real time. This possibility in turn allows for a complete description of excited state dynamics via quantum process tomography (QPT). Simulations of a noisy QPT experiment for an inhomogeneously broadened ensemble of model excitonic dimers show that the protocol distills rich information about dissipative excitonic dynamics, which appears nontrivially hidden in the signal monitored in single realizations of four-wave mixing experiments.


Journal of Chemical Physics | 2012

A witness for coherent electronic vs vibronic-only oscillations in ultrafast spectroscopy

Joel Yuen-Zhou; Jacob J. Krich; Alán Aspuru-Guzik

We report a conceptually straightforward witness that distinguishes coherent electronic oscillations from their vibronic-only counterparts in nonlinear optical spectra of molecular aggregates. Coherent oscillations as a function of waiting time in broadband pump/broadband probe spectra correspond to coherent electronic oscillations in the singly excited manifold. Oscillations in individual peaks of 2D electronic spectra do not necessarily yield this conclusion. Our witness is simpler to implement than quantum process tomography and potentially resolves a long-standing controversy on the character of oscillations in ultrafast spectra of photosynthetic light harvesting systems.


Nature Materials | 2014

Topologically protected excitons in porphyrin thin films

Joel Yuen-Zhou; Semion K. Saikin; Norman Yao; Alán Aspuru-Guzik

The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov-Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials.


Nature Communications | 2016

Plexciton Dirac points and topological modes.

Joel Yuen-Zhou; Semion K. Saikin; Tony Zhu; Mehmet C. Onbasli; C. A. Ross; Vladimir Bulovic; Marc A. Baldo

Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface of this plexcitonic system. Our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale.


Journal of Physical Chemistry Letters | 2018

Polariton-Assisted Singlet Fission in Acene Aggregates

Luis A. Martínez-Martínez; Matthew Du; Raphael F. Ribeiro; Stéphane Kéna-Cohen; Joel Yuen-Zhou

Singlet fission is an important candidate to increase energy conversion efficiency in organic photovoltaics by providing a pathway to increase the quantum yield of excitons per photon absorbed in select materials. We investigate the dependence of exciton quantum yield for acenes in the strong light-matter interaction (polariton) regime, where the materials are embedded in optical microcavities. Starting from an open-quantum-systems approach, we build a kinetic model for time-evolution of species of interest in the presence of singlet quenchers and show that polaritons can decrease or increase exciton quantum yields compared to the cavity-free case. In particular, we find that hexacene, under the conditions of our model, can feature a higher yield than cavity-free pentacene when assisted by polaritonic effects. Similarly, we show that pentacene yield can be increased when assisted by polariton states. Finally, we address how various relaxation processes between bright and dark states in lossy microcavities affect polariton photochemistry. Our results also provide insights on how to choose microcavities to enhance similarly related chemical processes.


Journal of Chemical Physics | 2014

Practical witness for electronic coherences

Allan S. Johnson; Joel Yuen-Zhou; Alán Aspuru-Guzik; Jacob J. Krich

The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse central frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.


ACS Photonics | 2017

Can Ultrastrong Coupling Change Ground-State Chemical Reactions?

Luis A. Martínez-Martínez; Raphael F. Ribeiro; Jorge Campos Gonzalez Angulo; Joel Yuen-Zhou

Recent advancements on the fabrication of organic micro- and nanostructures have permitted the strong collective light-matter coupling regime to be reached with molecular materials. Pioneering works in this direction have shown the effects of this regime in the excited state reactivity of molecular systems and at the same time have opened up the question of whether it is possible to introduce any modifications in the electronic ground energy landscape which could affect chemical thermodynamics and/or kinetics. In this work, we use a model system of many molecules coupled to a surface-plasmon field to gain insight on the key parameters which govern the modifications of the ground-state Potential Energy Surface. Our findings confirm that the energetic changes per molecule are determined by effects which are essentially on the order of single-molecule light-matter couplings, in contrast with those of the electronically excited states, for which energetic corrections are of a collective nature. Still, we reve...

Collaboration


Dive into the Joel Yuen-Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Du

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinod M. Menon

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Adam D. Dunkelberger

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge