Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joell J. Gills is active.

Publication


Featured researches published by Joell J. Gills.


Clinical Cancer Research | 2007

Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo

Joell J. Gills; Jaclyn LoPiccolo; Junji Tsurutani; Robert H. Shoemaker; Carolyn J.M. Best; Mones Abu-Asab; Jennifer P. Borojerdi; Noel A. Warfel; Erin R. Gardner; Matthew Danish; M. Christine Hollander; Shigeru Kawabata; Maria Tsokos; William D. Figg; Patricia S. Steeg; Phillip A. Dennis

Purpose: The development of new cancer drugs is slow and costly. HIV protease inhibitors are Food and Drug Administration approved for HIV patients. Because these drugs cause toxicities that can be associated with inhibition of Akt, an emerging target in cancer, we assessed the potential of HIV protease inhibitors as anticancer agents. Experimental Design: HIV protease inhibitors were screened in vitro using assays that measure cellular proliferation, apoptotic and nonapoptotic cell death, endoplasmic reticulum (ER) stress, autophagy, and activation of Akt. Nelfinavir was tested in non–small cell lung carcinoma (NSCLC) xenografts with biomarker assessment. Results: Three of six HIV protease inhibitors, nelfinavir, ritonavir, and saquinavir, inhibited proliferation of NSCLC cells, as well as every cell line in the NCI60 cell line panel. Nelfinavir was most potent with a mean 50% growth inhibition of 5.2 μmol/L, a concentration achievable in HIV patients. Nelfinavir caused two types of cell death, caspase-dependent apoptosis and caspase-independent death that was characterized by induction of ER stress and autophagy. Autophagy was protective because an inhibitor of autophagy increased nelfinavir-induced death. Akt was variably inhibited by HIV protease inhibitors, but nelfinavir caused the greatest inhibition of endogenous and growth factor–induced Akt activation. Nelfinavir decreased the viability of a panel of drug-resistant breast cancer cell lines and inhibited the growth of NSCLC xenografts that was associated with induction of ER stress, autophagy, and apoptosis. Conclusions: Nelfinavir is a lead HIV protease inhibitor with pleiotropic effects in cancer cells. Given its wide spectrum of activity, oral availability, and familiarity of administration, nelfinavir is a Food and Drug Administration–approved drug that could be repositioned as a cancer therapeutic.


Clinical Cancer Research | 2006

Handicapping the Race to Develop Inhibitors of the Phosphoinositide 3-Kinase/Akt/Mammalian Target of Rapamycin Pathway

Courtney A. Granville; Regan M. Memmott; Joell J. Gills; Phillip A. Dennis

The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway controls many cellular processes that are important for the formation and progression of cancer, including apoptosis, transcription, translation, metabolism, angiogenesis, and cell cycle progression. Genetic alterations and biochemical activation of the pathway are frequent events in preneoplastic lesions and advanced cancers and often portend a poor prognosis. Thus, inhibition of the PI3K/Akt/mTOR pathway is an attractive concept for cancer prevention and/or therapy. Inhibitors of individual components, such as PI3K, PDK-1, Akt, and mTOR, are being developed at a rapid pace and have promise for improving the care of cancer patients. Here, we review the published data on inhibitors of the pathway and discuss relevant issues, such as the complex regulation of the pathway, the design of clinical trials, and the likelihood of finding a therapeutic index when targeting such a critical signaling pathway.


Cancer Research | 2005

Inhibition of the Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin Pathway but not the MEK/ERK Pathway Attenuates Laminin-Mediated Small Cell Lung Cancer Cellular Survival and Resistance to Imatinib Mesylate or Chemotherapy

Junji Tsurutani; Kip A. West; Jacqueline Sayyah; Joell J. Gills; Phillip A. Dennis

The fact that small cell lung cancer (SCLC) is commonly incurable despite being initially responsive to chemotherapy, combined with disappointing results from a recent SCLC clinical trial with imatinib, has intensified efforts to identify mechanisms of SCLC resistance. Adhesion to extracellular matrix (ECM) is one mechanism that can increase therapeutic resistance in SCLC cells. To address whether adhesion to ECM increases resistance through modulation of signaling pathways, a series of SCLC cell lines were plated on various ECM components, and activation of two signaling pathways that promote cellular survival, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) pathway, was assessed. Although differential activation was observed, adhesion to laminin increased Akt activation, increased cellular survival after serum starvation, and caused the cells to assume a flattened, epithelial morphology. Inhibitors of the PI3K/Akt/mTOR pathway (LY294002, rapamycin) but not the MEK/ERK pathway (U0126) abrogated laminin-mediated survival. SCLC cells plated on laminin were not only resistant to serum starvation-induced apoptosis but were also resistant to apoptosis caused by imatinib. Combining imatinib with LY294002 or rapamycin but not U0126 caused greater than additive increases in apoptosis compared with apoptosis caused by the inhibitor or imatinib alone. Similar results were observed when adenoviruses expressing mutant Akt were combined with imatinib, or when LY294002 was combined with cisplatin or etoposide. These studies identify laminin-mediated activation of the PI3K/Akt/mTOR pathway as a mechanism of cellular survival and therapeutic resistance in SCLC cells and suggest that inhibition of the PI3K/Akt/mTOR pathway is one strategy to overcome SCLC resistance mediated by ECM.


Autophagy | 2008

Nelfinavir, a new anti-cancer drug with pleiotropic effects and many paths to autophagy

Joell J. Gills; Jaclyn LoPiccolo; Phillip A. Dennis

The development of cancer drugs is slow and costly. One approach to accelerate the availability of new drugs is to reposition drugs approved for other indications as anti-cancer agents. HIV protease inhibitors (HIV PIs) are useful in treating HIV infection and cause toxicities in humans that are similar to those observed when the kinase Akt, a target for cancer therapy, is inhibited. To test whether HIV PIs inhibited Akt and cancer cell proliferation, we screened 6 HIV PIs and found that three, ritonavir, saquinavir and nelfinavir, inhibit the growth of over 60 cancer cell lines derived from 9 different tumor types; Nelfinavir is the most potent. Nelfinavir causes caspase-dependent apoptosis and non-apoptotic death, as well as endoplasmic reticulum (ER) stress and autophagy. Nelfinavir blocks growth factor receptor activation and decreases growth factor-induced and endogenous Akt signaling. In vivo, nelfinavir inhibits tumor growth and upregulates markers of ER stress, autophagy and apoptosis. Nelfinavir is currently being tested in cancer patients in Phase I clinical trials where biomarkers will be assessed. Current studies are focused on measuring autophagy in clinical specimens and identifying combination strategies that will exploit the induction of autophagy and increase the effectiveness of nelfinavir.


Expert Opinion on Investigational Drugs | 2004

The development of phosphatidylinositol ether lipid analogues as inhibitors of the serine/threonine kinase, Akt

Joell J. Gills; Phillip A. Dennis

The serine/threonine kinase Akt is a component of the phosphatidylinositol 3′-kinase/Akt signal transduction pathway that is activated by receptor tyrosine kinases, activated Ras and integrins. As Akt regulates many processes crucial to carcinogenesis, and Akt activation has been observed in human cancers, intense efforts are underway to develop Akt inhibitors as cancer therapeutics. Towards this aim, phosphatidylinositol ether lipid analogues (PIAs), which are structurally similar to the products of phosphatidylinositol 3′-kinase, have been synthesised. PIAs inhibit Akt translocation, phosphorylation and kinase activity. Furthermore, they selectively induce apoptosis in cancer cell lines that depend on Akt for survival. This review will trace the development of PIAs, cover the biological activities of PIAs and discuss future steps and challenges in their development.


Journal of Biological Chemistry | 2007

Phosphatidylinositol Ether Lipid Analogues That Inhibit AKT Also Independently Activate the Stress Kinase, p38α, through MKK3/6-independent and -dependent Mechanisms

Joell J. Gills; S. Sianna Castillo; Chunyu Zhang; Pavel A. Petukhov; Regan M. Memmott; Melinda G. Hollingshead; Noel A. Warfel; Jiahuai Han; Alan P. Kozikowski; Phillip A. Dennis

Previously, we identified five active phosphatidylinositol ether lipid analogues (PIAs) that target the pleckstrin homology domain of Akt and selectively induce apoptosis in cancer cells with high levels of Akt activity. To examine specificity, PIAs were screened against a panel of 29 purified kinases. No kinase was inhibited, but one isoform of p38, p38α, was uniformly activated 2-fold. Molecular modeling of p38α revealed the presence of two regions that could interact with PIAs, one in the activation loop and a heretofore unappreciated region in the upper lobe that resembles a pleckstrin homology domain. In cells, two phases of activation were observed, an early phase that was independent of the upstream kinase MKK3/6 and inhibited by the p38 inhibitor SB203580 and a latter phase that was coincident with MKK3/6 activation. In short term xenograft experiments that employed immunohistochemistry and immunoblotting, PIA administration increased phosphorylation of p38 but not MKK3/6 in tumors in a statistically significant manner. Although PIAs rapidly activated p38 with similar time and dose dependence as Akt inhibition, p38 activation and Akt inhibition were independent events induced by PIAs. Using SB203580 or p38α-/- cells, we showed that p38α is not required for PIA-induced apoptosis but is required for H2O2- and anisomycin-induced apoptosis. Nonetheless, activation of p38a contributes to PIA-induced apoptosis, because reconstitution of p38a into p38α-/- cells increased apoptosis. These studies indicate that p38α is activated by PIAs through a novel mechanism and show that p38α activation contributes to PIA-induced cell death. Independent modulation of Akt and p38α could account for the profound cytotoxicity of PIAs.


Cancer Research | 2008

Phosphatidylinositol Ether Lipid Analogues Induce AMP-Activated Protein Kinase–Dependent Death in LKB1-Mutant Non–Small Cell Lung Cancer Cells

Regan M. Memmott; Joell J. Gills; Melinda G. Hollingshead; Margaret C. Powers; Zhi-Ping Chen; Bruce E. Kemp; Alan P. Kozikowski; Phillip A. Dennis

Loss of function of the tumor suppressor LKB1 occurs in 30% to 50% of lung adenocarcinomas. Because LKB1 activates AMP-activated protein kinase (AMPK), which can negatively regulate mTOR, AMPK activation might be desirable for cancer therapy. However, no known compounds activate AMPK independently of LKB1 in vivo, and the usefulness of activating AMPK in LKB1-mutant cancers is unknown. Here, we show that lipid-based Akt inhibitors, phosphatidylinositol ether lipid analogues (PIA), activate AMPK independently of LKB1. PIAs activated AMPK in LKB1-mutant non-small cell lung cancer (NSCLC) cell lines with similar concentration dependence as that required to inhibit Akt. However, AMPK activation was independent of Akt inhibition. AMPK activation was a major mechanism of mTOR inhibition. To assess whether another kinase capable of activating AMPK, CaMKK beta, contributed to PIA-induced AMPK activation, we used an inhibitor of CaMKK, STO-609. STO-609 inhibited PIA-induced AMPK activation in LKB1-mutant NSCLC cells, and delayed AMPK activation in wild-type LKB1 NSCLC cells. In addition, AMPK activation was not observed in NSCLC cells with mutant CaMKK beta, suggesting that CaMKK beta contributes to PIA-induced AMPK activation in cells. AMPK activation promoted PIA-induced cytotoxicity because PIAs were less cytotoxic in AMPKalpha-/- murine embryonic fibroblasts or LKB1-mutant NSCLC cells transfected with mutant AMPK. This mechanism was also relevant in vivo. Treatment of LKB1-mutant NSCLC xenografts with PIA decreased tumor volume by approximately 50% and activated AMPK. These studies show that PIAs recapitulate the activity of two tumor suppressors (PTEN and LKB1) that converge on mTOR. Moreover, they suggest that PIAs might have utility in the treatment of LKB1-mutant lung adenocarcinomas.


Molecular Cancer Therapeutics | 2006

Spectrum of activity and molecular correlates of response to phosphatidylinositol ether lipid analogues, novel lipid-based inhibitors of Akt

Joell J. Gills; Susan Holbeck; Melinda G. Hollingshead; Stephen M. Hewitt; Alan P. Kozikowski; Phillip A. Dennis

The serine/threonine kinase Akt is a promising target in cancer. We previously identified five phosphatidylinositol ether lipid analogues (PIA) that inhibited Akt activation and selectively killed lung and breast cancer cells with high levels of Akt activity. To assess the spectrum of activity in other cell types and to compare PIAs with other inhibitors of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, we compared growth inhibition by PIAs against the PI3K inhibitors LY294002 and wortmannin and the mTOR inhibitor rapamycin in the NCI60 cell line panel. Although each of these compounds inhibited the growth of all the cell lines, distinct patterns were observed. The PIAs were the least potent but the most cytotoxic. The broad spectrum of activity of PIAs was confirmed in vivo in hollow fiber assays. The response to PIAs was significantly correlated with levels of active but not total Akt in the NCI60, as assessed using COMPARE analysis. However, a number of molecular targets were identified whose expression was more highly correlated with sensitivity to PIAs than active Akt. Expression of these molecular targets did not overlap with those that correlated with sensitivity to LY294002, wortmannin, or rapamycin. A COMPARE analysis of the National Cancer Institute chemical screening database revealed that the patterns of activity of PIAs correlated best with patterns of activity of other lipid-based compounds. These studies show that although PIAs are widely active in cancer cells, which correlates with the presence of its intended target, active Akt, PIAs are biologically distinct from other known inhibitors of the PI3K/Akt/mTOR pathway. [Mol Cancer Ther 2006;5(3):713–22]


Cancer Prevention Research | 2009

The Chemopreventive Agent Myoinositol Inhibits Akt and Extracellular Signal-Regulated Kinase in Bronchial Lesions from Heavy Smokers

Wei Han; Joell J. Gills; Regan M. Memmott; Stephen Lam; Phillip A. Dennis

Myoinositol is an isomer of glucose that has chemopreventive activity in animal models of cancer. In a recent phase I clinical trial, myoinositol administration correlated with a statistically significant regression of preexisting bronchial dysplastic lesions in heavy smokers. To shed light on the potential mechanisms involved, activation of Akt and extracellular signal-regulated kinase (ERK), two kinases that control cellular proliferation and survival, was assessed in 206 paired bronchial biopsies from 21 patients who participated in this clinical trial. Before myoinositol treatment, strongly positive staining for activation of Akt was detected in 27% of hyperplastic/metaplastic lesions and 58% of dysplastic lesions (P = 0.05, χ2 test). There was also a trend toward increased activation of ERK (28% in regions of hyperplasia/metaplasia to 42% of dysplastic lesions). Following myoinositol treatment, significant decreases in Akt and ERK phosphorylation were observed in dysplastic (P < 0.01 and 0.05, respectively) but not hyperplastic/metaplastic lesions (P > 0.05). In vitro, myoinositol decreased endogenous and tobacco carcinogen–induced activation of Akt and ERK in immortalized human bronchial epithelial cells, which decreased cell proliferation and induced a G1-S cell cycle arrest. These results show that the phenotypic progression of premalignant bronchial lesions from smokers correlates with increased activation of Akt and ERK and that these kinases are targets of myoinositol. Moreover, they suggest that myoinositol might cause regression of bronchial dysplastic lesions through inhibition of active Akt and ERK.


Cell Death and Disease | 2012

Synergistic effects of nelfinavir and bortezomib on proteotoxic death of NSCLC and multiple myeloma cells

Shigeru Kawabata; Joell J. Gills; José R. Mercado-Matos; Jaclyn LoPiccolo; Whitney Wilson; Mary Christine Hollander; Phillip A. Dennis

Exploiting protein homeostasis is a new therapeutic approach in cancer. Nelfinavir (NFV) is an HIV protease inhibitor that induces endoplasmic reticulum (ER) stress in cancer cells. Under conditions of ER stress, misfolded proteins are transported from the ER back to the cytosol for subsequent degradation by the ubiquitin–proteasome system. Bortezomib (BZ) is a proteasome inhibitor and interferes with degradation of misfolded proteins. Here, we show that NFV and BZ enhance proteotoxicity in non-small cell lung cancer (NSCLC) and multiple myeloma (MM) cells. The combination synergistically inhibited cell proliferation and induced cell death. Activating transcription factor (ATF)3 and CCAAT-enhancer binding protein homologous protein (CHOP), markers of ER stress, were rapidly increased, and their siRNA-mediated knockdown inhibited cell death. Knockdown of double-stranded RNA activated protein kinase-like ER kinase, a signal transducer in ER stress, significantly decreased apoptosis. Pretreatment with the protein synthesis inhibitor, cycloheximide, decreased levels of ubiquitinated proteins, ATF3, CHOP, and the overall total cell death, suggesting that inhibition of protein synthesis increases cell survival by relieving proteotoxic stress. The NFV/BZ combination inhibited the growth of NSCLC xenografts, which correlated with the induction of markers of ER stress and apoptosis. Collectively, these data show that NFV and BZ enhance proteotoxicity in NSCLC and MM cells, and suggest that this combination could tip the precarious balance of protein homeostasis in cancer cells for therapeutic gain.

Collaboration


Dive into the Joell J. Gills's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunyu Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Regan M. Memmott

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jaclyn LoPiccolo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan P. Kozikowski

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Courtney A. Granville

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge