Joëlle Gaschet
University of Nantes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joëlle Gaschet.
Journal of Clinical Investigation | 1996
Joëlle Gaschet; Annick Lim; Linda Liem; Régine Vivien; Marie-Martine Hallet; Jean-Luc Harousseau; Jos Even; Els Goulmy; Marc Bonneville; Noel Milpied; Henri Vié
Analysis of a large number of unrelated bone marrow transplantations (BMT) has shown that HLA-DP incompatibility did not detectably influence the risk for acute graft-versus-host disease (aGVHD). Accordingly, it was proposed that HLA-DP determinants did not function as transplantation antigens in the same way as HLA-A, -B, or -DR. We have previously shown that HLA-DP (as well as HLA-A, -B, -DQ, or -DR)-specific T cells could be isolated from skin biopsies of patients who developed an aGVHD after semiallogeneic BMT. Nevertheless, whether a single HLA-DP mismatched allele could induce a detectable allo-specific reaction in vivo after BMT remained to be established. To directly address this issue we studied one patient who presented aGVHD after receiving purified CD34+ bone marrow (BM) cells from an unrelated donor with a single HLA-DP mismatch in the GVHD direction. To characterize the immunological events associated with GVHD, we analyzed the peripheral T cell repertoire, the T cell receptor Vbeta diversity, and the specificity of T cells invading a skin biopsy at the onset of GVHD. Our results demonstrated that a large fraction of skin-infiltrating lymphocytes, which expressed diverse T cell receptors, were reactive against this single HLA-DPB1 *0501 mismatch and consequently that a single HLA-DP mismatch between BM donor and recipient can activate a strong T cell response in vivo.
The Journal of Nuclear Medicine | 2013
Michel Chérel; Sébastien Gouard; Joëlle Gaschet; Catherine Saï-Maurel; Frank Bruchertseifer; Alfred Morgenstern; Mickaël Bourgeois; Jean-François Gestin; Francoise Bodere; Jacques Barbet; Philippe Moreau; François Davodeau
New multiple myeloma (MM) treatments—such as high-dose melphalan therapy plus autologous stem cell transplantation or regimens incorporating bortezomide, thalidomide, and lenalidomide—substantially increase the rate of complete response that is associated with longer patient survival. Thus, maintaining the complete response status by improving the minimal residual disease after induction therapy is a key goal for MM management. Here, we address the question of radioimmunotherapy efficacy in MM minimal residual disease treatment in mice with a low tumor burden. α-emitters are particularly well adapted to this approach because the short range of α-particles enables localized irradiation of tumor cells within the bone marrow and a cytotoxic effect on isolated cells due to the high LET (linear energy transfer) of α-particles. The CD138 antigen was used as a target because of its strong expression on myeloma cells in 100% of patients. Method: Intravenous injection of 106 5T33 mouse myeloma cells into the Syngeneic mouse strain C57BL/KaLwRij resulted in a rapid invasion of the marrow and limb paralysis, as illustrated by bioluminescence imaging with luciferase-transfected 5T33 cells. Radioimmunotherapy was performed 10 d after 5T33 cell engraftment with an intravenous injection of an antimouse CD138 antibody radiolabeled with 213Bi at activities of 1.85, 3.7, 7.4, and 11.1 MBq. A blood cell count was performed weekly to monitor hematologic toxicity. The levels of blood Flt3 ligand were also measured to evaluate the radioimmunotherapy-related myelotoxicity. Disease progression was monitored by titrating the monoclonal IgG2b antibody produced by 5T33 cells. Results: The groups treated with 3.7 and 7.4 MBq exhibited a median survival greater than 300 and 227 d, respectively, compared with 45.5 d in the control untreated group. The highest activity (11.1 MBq) showed short-term toxicity whereas the lowest activity (1.85 MBq) gave results similar to those of the controls. With activities of 3.7 and 7.4 MBq, mice exhibited a transient hematologic toxicity whereas only temporary and moderate myelotoxicity was observed with 7.4 MBq. Conclusion: This study demonstrates promising therapeutic efficacy of 213Bi-labeled anti-mCD138 for the treatment of residual disease in the case of MM, with only moderate and transient toxicity.
Seminars in Oncology | 2014
Françoise Kraeber-Bodéré; C. Bodet-Milin; C. Rousseau; Thomas Eugene; Amandine Pallardy; Eric Frampas; Thomas Carlier; Ludovic Ferrer; Joëlle Gaschet; François Davodeau; Jean-François Gestin; Alain Faivre-Chauvet; Jacques Barbet; Michel Chérel
Radioimmunotherapy (RIT) has been developed for more than 30 years. Two products targeting the CD20 antigen are approved in the treatment of non-Hodgkin B-cell lymphoma (NHBL): iodine 131-tositumomab and yttrium 90-ibritumomab tiuxetan. RIT can be integrated in clinical practice for the treatment of patients with relapsed or refractory follicular lymphoma (FL) or as consolidation after induction chemotherapy. High-dose treatment, RIT in first-line treatment, fractionated RIT, and use of new humanized monoclonal antibodies (MAbs), in particular targeting CD22, showed promising results in NHBL. In other hemopathies, such as multiple myeloma, efficacy has been demonstrated in preclinical studies. In solid tumors, more resistant to radiation and less accessible to large molecules such as MAbs, clinical efficacy remains limited. However, pretargeting methods have shown clinical efficacy. Finally, new beta emitters such as lutetium 177, with better physical properties will further improve the safety of RIT and alpha emitters, such as bismuth 213 or astatine 211, offer the theoretical possibility to eradicate the last microscopic clusters of tumor cells, in the consolidation setting. Personalized treatments, based on quantitative positron emission tomography (PET), pre-therapeutic imaging, and dosimetry procedures, also could be applied to adapt injected activity to each patient.
Journal of Immunology | 2001
Géraldine Gallot; Régine Vivien; Catherine Ibisch; Jaqueline Lulé; Christian Davrinche; Joëlle Gaschet; Henri Vié
The two main constraints that currently limit a broader usage of T cell therapy against viruses are the delay required to obtain specific T cells and the safety of the selection procedure. In the present work we developed a generally applicable strategy that eliminates the need for APC for timing reasons, and the need for infectious viral strains for safety concerns. As a model, we used the selection of T lymphocytes specific for the immunodominant CMV phosphoprotein pp65. PBMC from healthy seropositive donors were first depleted of IL-2R α-chain CD25+ cells and were then stimulated for 24–96 h with previously defined peptide Ags or with autologous PBMC infected with a canarypox viral vector encoding the total pp65 protein (ALVAC-pp65). Subsequent immunomagnetic purification of newly CD25-expressing cells allowed efficient recovery of T lymphocytes specific for the initial stimuli, i.e., for the already known immunodominant epitope corresponding to the peptides used as a model or for newly defined epitopes corresponding to peptides encoded by the transfected pp65 protein. Importantly, we demonstrated that direct PBMC stimulation allowed recovery not only of CD8+ memory T lymphocytes, but also of the CD4+ memory T cells, which are known to be crucial to ensure persistence of adoptively transferred immune memory. Finally, our analysis of pp65-specific T cells led to the identification of several new helper and cytotoxic epitopes. This work thus demonstrates the feasibility of isolating memory T lymphocytes specific for a clinically relevant protein without the need to prepare APC, to use infectious viral strains, or to identify immunodominant epitopes.
EJNMMI research | 2011
C. Rousseau; Anne Lise Ruellan; Karine Bernardeau; Françoise Kraeber-Bodéré; Sébastien Gouard; Delphine Loussouarn; Catherine Saï-Maurel; Alain Faivre-Chauvet; John Wijdenes; Jacques Barbet; Joëlle Gaschet; Michel Chérel; François Davodeau
BackgroundOverexpression of syndecan-1 (CD138) in breast carcinoma correlates with a poor prognosis and an aggressive phenotype. The objective of this study was to evaluate the potential of targeting CD138 by immuno-PET imaging and radioimmunotherapy (RIT) using the antihuman syndecan-1 B-B4 mAb radiolabeled with either 124I or 131I in nude mice engrafted with the triple-negative MDA-MB-468 breast cancer cell line.MethodThe immunoreactivity of 125I-B-B4 (80%) was determined, and the affinity of 125I-B-B4 and the expression of CD138 on MDA-MB-468 was measured in vitro by Scatchard analysis. CD138 expression on established tumors was confirmed by immunohistochemistry. A biodistribution study was performed in mice with subcutaneous MDA-MB-468 and 125I-B-B4 at 4, 24, 48, 72, and 96 h after injection and compared with an isotype-matched control. Tumor uptake of B-B4 was evaluated in vivo by immuno-PET imaging using the 124I-B-B4 mAb. The maximum tolerated dose (MTD) was determined from mice treated with 131I-B-B4 and the RIT efficacy evaluated.Results125I-B-B4 affinity was in the nanomolar range (Kd = 4.39 ± 1.10 nM). CD138 expression on MDA-MB-468 cells was quite low (Bmax = 1.19 × 104 ± 9.27 × 102 epitopes/cell) but all expressed CD138 in vivo as determined by immunohistochemistry. The tumor uptake of 125I-B-B4 peaked at 14% injected dose (ID) per gram at 24 h and was higher than that of the isotype-matched control mAb (5% ID per gram at 24 h). Immuno-PET performed with 124I-B-B4 on tumor-bearing mice confirmed the specificity of B-B4 uptake and its retention within the tumor. The MTD was reached at 22.2 MBq. All mice treated with RIT (n = 8) as a single treatment at the MTD experienced a partial (n = 3) or complete (n = 5) response, with three of them remaining tumor-free 95 days after treatment.ConclusionThese results demonstrate that RIT with 131I-B-B4 could be considered for the treatment of metastatic triple-negative breast cancer that cannot benefit from hormone therapy or anti-Her2/neu immunotherapy. Immuno-PET for visualizing CD138-expressing tumors with 124I-B-B4 reinforces the interest of this mAb for diagnosis and quantitative imaging.
Journal of Immunotherapy | 2006
Béatrice Clémenceau; Géraldine Gallot; Régine Vivien; Joëlle Gaschet; Mario Campone; Henri Vié
Twenty percent of breast cancer adenocarcinomas overexpress the oncogene c-erb-2 that is recognized by the humanized anti-Her2/neu monoclonal antibody Herceptin. Results from clinical studies suggest that antibody-dependent cellular cytotoxicity (ADCC) is involved in the clinical response of Herceptin-treated patients. The purpose of the current study was to evaluate the possibility of amplifying in vitro the CD3−/CD16+ natural killer (NK) cell subset that mediates ADCC from breast cancer patients after chemotherapy. Peripheral blood mononuclear cells from six breast cancer patients taken 2 months after chemotherapy completion were co-cultured with an autologous irradiated Epstein-Barr virus-transformed B-lymphoblastoid cell line (LCL) in the presence of interleukin-2 (IL-2) for 4-6 weeks. These LCL + IL2 activated cultures (ACs) were tested for ADCC potential, and their CD3−/CD16+ NK proportion was quantified. Among the ACs, the proportion of CD3−/CD16+ NK cells increased up to 64% over the first 2 weeks of culture and the ACs continued to expand for 1 month thereafter. Control and patient ACs displayed ADCC activity (tested in the presence of Rituximab against the autologous LCL to take into account any possible effect of inhibitory NK receptors) as well as against the MCF-7Her2/neu breast cancer cell line in the presence of Herceptin. This ADCC activity was maintained during the entire culture period. In conclusion, chemotherapy in breast cancer patients does not obviate the possibility of amplifying in vitro the NK cell subset that mediates ADCC. Consequently, adoptive transfer of lymphocytes mediating ADCC can be considered using this protocol to test its benefit in patients under Herceptin treatment.
Cytokine | 2009
Michel Chérel; Loic Campion; Stéphane Bézieau; Mario Campone; Josiane Charrier; Joëlle Gaschet; Gabriel Ricolleau; Wilfried Gouraud; Catherine Charbonnel; Pascal Jézéquel
Interleukin-6 (IL-6) is a cytokine involved in different physiologic and pathophysiologic processes including carcinogenesis. In 2003, a single nucleotide polymorphism (-174G/C) of the IL-6 gene promoter has been linked to breast cancer prognosis in node-positive (N+) breast cancer patients. Since, different studies have led to conflicting conclusions about its role as a prognostic and/or diagnostic marker. The primary aim of our study was to investigate the link between -174G/C polymorphism and breast cancer risk on the one hand, and -174G/C polymorphism and prognosis in different groups of patients: sporadic N+breast cancers (n=138), sporadic N- breast cancers (n=95) and familial breast cancer (n=60) on the other hand. The variables of interest were disease-free survival and overall survival. The secondary aim of the study was to screen IL-6 gene promoter using direct sequencing to identify new polymorphisms in our French Caucasian breast cancer population. No association or trend of association between -174G/C polymorphism of IL-6 gene promoter gene and breast cancer diagnosis or prognosis was shown, even in meta-analyses. Furthermore, we have identified four novel polymorphic sites in the IL-6 gene promoter region: -764G-->A, -757C-->T, -233T-->A, 15C-->A.
PLOS ONE | 2015
Jérémie Ménager; Jean-Baptiste Gorin; Catherine Maurel; Lucile Drujont; Sébastien Gouard; Cédric Louvet; Michel Chérel; Alain Faivre-Chauvet; Alfred Morgenstern; Frank Bruchertseifer; François Davodeau; Joëlle Gaschet; Yannick Guilloux
Ionizing radiation induces direct and indirect killing of cancer cells and for long has been considered as immunosuppressive. However, this concept has evolved over the past few years with the demonstration that irradiation can increase tumor immunogenicity and can actually favor the implementation of an immune response against tumor cells. Adoptive T-cell transfer (ACT) is also used to treat cancer and several studies have shown that the efficacy of this immunotherapy was enhanced when combined with radiation therapy. α-Radioimmunotherapy (α-RIT) is a type of internal radiotherapy which is currently under development to treat disseminated tumors. α-particles are indeed highly efficient to destroy small cluster of cancer cells with minimal impact on surrounding healthy tissues. We thus hypothesized that, in the setting of α-RIT, an immunotherapy like ACT, could benefit from the immune context induced by irradiation. Hence, we decided to further investigate the possibilities to promote an efficient and long-lasting anti-tumor response by combining α-RIT and ACT. To perform such study we set up a multiple myeloma murine model which express the tumor antigen CD138 and ovalbumine (OVA). Then we evaluated the therapeutic efficacy in the mice treated with α-RIT, using an anti-CD138 antibody coupled to bismuth-213, followed by an adoptive transfer of OVA-specific CD8+ T cells (OT-I CD8+ T cells). We observed a significant tumor growth control and an improved survival in the animals treated with the combined treatment. These results demonstrate the efficacy of combining α-RIT and ACT in the MM model we established.
Seminars in Nuclear Medicine | 2016
Caroline Bodet-Milin; Françoise Kraeber-Bodéré; Thomas Eugene; François Guérard; Joëlle Gaschet; Clément Bailly; Marie Mougin; Mickaël Bourgeois; Alain Faivre-Chauvet; Michel Chérel; P Chevallier
Acute leukemias are characterized by accumulation of immature cells (blasts) and reduced production of healthy hematopoietic elements. According to the lineage origin, two major leukemias can be distinguished: acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). Although the survival rate for pediatric ALL is close to 90%, half of the young adults with AML or ALL and approximately 90% of older patients with AML or ALL still die of their disease, raising the need for innovative therapeutic approaches. As almost all leukemic blasts express specific surface antigens, targeted immunotherapy appears to be particularly promising. However, published results of immunotherapy alone are generally modest. Radioimmunotherapy (RIT) brings additional therapeutic mechanisms using radiolabeled monoclonal antibodies (mAbs) directed to tumor antigens, thus adding radiobiological cytotoxicity to immunologic cytotoxicity. Because of the high radiosensitivity of tumor cells and the diffuse widespread nature of the disease, making it rapidly accessible to circulating radiolabeled mAbs, acute leukemias represent relevant indications for RIT. With the development of recombinant and humanized mAbs, innovative radionuclides, and more efficient radiolabeling and pretargeting techniques, RIT has significantly improved over the last 10 years. Different approaches of α and β RIT targeting CD22, CD33, CD45, or CD66 antigens have already been evaluated or are currently being developed in the treatment of acute leukemia. This review summarizes the preclinical and clinical studies demonstrating the potential of RIT in treatment of AML and ALL.
Nuclear Medicine and Biology | 2014
Sébastien Gouard; A. Pallardy; Joëlle Gaschet; Alain Faivre-Chauvet; Frank Bruchertseifer; Alfred Morgenstern; Catherine Maurel; E. Matous; F. Kraeber-Bodéré; François Davodeau; Michel Chérel
INTRODUCTION Multiple myeloma (MM) is a B-cell malignancy of terminally differentiated plasma cells within the bone marrow. Despite intense research to develop new treatments, cure is almost never achieved. Alpha-radioimmunotherapy (RIT) has been shown to be effective in vivo in a MM model. In order to define where alpha-RIT stands in MM treatment, the aim of this study was to compare Melphalan, MM standard treatment, with alpha-RIT using a [213Bi]-anti-mCD138 antibody in a syngeneic MM mouse model. METHODS C57BL/KaLwRij mice were grafted with 1 × 10(6) 5T33 murine MM cells. Luciferase transfected 5T33 cells were used for in vivo localization. The first step of the study was to assess the dose-response of Melphalan 21 days after engraftment. The second step consisted in therapeutic combination: Melphalan followed by RIT at day 22 or day 25 after engraftment. Toxicity (animal weight, blood cell counts) and treatment efficacy were studied in animals receiving no treatment, injected with Melphalan alone, RIT alone at day 22 or day 25 (3.7 MBq of [213Bi]-anti-CD138) and Melphalan combined with alpha-RIT. RESULTS Fifty percent of untreated mice died by day 63 after MM engraftment. In mice treated with Melphalan alone, only the 200 μg dose improved median survival. No animal was cured after Melphalan treatment whereas 60% of the mice survived with RIT alone at day 22 after tumor engraftment with only slight and reversible hematological radiotoxicity. No therapeutic effect was observed with alpha-RIT 25 days after engraftment. Melphalan and alpha-RIT combination does not improve overall survival compared to RIT alone, and results in increased leukocyte and red blood cell toxicity. CONCLUSIONS Alpha-RIT seems to be a good alternative to Melphalan. Association of these two treatments provides no benefit. The perspectives of this work would be to evaluate RIT impact on the regimens incorporating the novel agents bortezomide, thalidomide and lenalidomide.