Joëlle Roche
University of Poitiers
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joëlle Roche.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Yoshio Tomizawa; Yoshitaka Sekido; Masashi Kondo; Boning Gao; Jun Yokota; Joëlle Roche; Harry A. Drabkin; Michael I. Lerman; Adi F. Gazdar; John D. Minna
Semaphorins SEMA3B and its homologue SEMA3F are 3p21.3 candidate tumor suppressor genes (TSGs), the expression of which is frequently lost in lung cancers. To test the TSG candidacy of SEMA3B and SEMA3F, we transfected them into lung cancer NCI-H1299 cells, which do not express either gene. Colony formation of H1299 cells was reduced 90% after transfection with wild-type SEMA3B compared with the control vector. By contrast, only 30–40% reduction in colony formation was seen after the transfection of SEMA3F or SEMA3B variants carrying lung cancer-associated single amino acid missense mutations. H1299 cells transfected with wild-type but not mutant SEMA3B underwent apoptosis. We found that lung cancers (n = 34) always express the neuropilin-1 receptor for secreted semaphorins, whereas 82% expressed the neuropilin-2 receptor. Because SEMA3B and SEMA3F are secreted proteins, we tested conditioned medium from COS-7 cells transfected with SEMA3B and SEMA3F and found that medium from wild-type SEMA3B transfectants reduced the growth of several lung cancer lines 30–90%, whereas SEMA3B mutants or SEMA3F had little effect in the same assay. Sequencing of sodium bisulfite-treated DNA showed dense methylation of CpG sites in the SEMA3B 5′ region of lung cancers not expressing SEMA3B but no methylation in SEMA3B-expressing tumors. These results are consistent with SEMA3B functioning as a TSG, the expression of which is inactivated frequently in lung cancers by allele loss and promoter region methylation.
Proceedings of the National Academy of Sciences of the United States of America | 2000
Roser Calvo; James West; Wilbur A. Franklin; Paul F. Erickson; Lynne T. Bemis; Efang Li; Barbara Helfrich; Paul A. Bunn; Joëlle Roche; Elisabeth Brambilla; Rafael Rosell; Robert M. Gemmill; Harry A. Drabkin
HOX genes encode transcription factors that control patterning and cell fates. Alterations in HOX expression have been clearly implicated in leukemia, but their role in most other malignant diseases remains unknown. By using degenerate reverse transcription-PCR and subsequent real-time quantitative assays, we examined HOX expression in lung cancer cell lines, direct tumor-control pairs, and bronchial epithelial cultures. As in leukemia, genes of the HOX9 paralogous group and HOXA10 were frequently overexpressed. For HOXB9, we confirmed that elevated RNA was associated with protein overexpression. In some cases, marked HOX overexpression was associated with elevated FGF10 and FGF17. During development, the WNT pathway affects cell fate, polarity, and proliferation, and WNT7a has been implicated in the maintenance of HOX expression. In contrast to normal lung and mortal short-term bronchial epithelial cultures, WNT7a was frequently reduced or absent in lung cancers. In immortalized bronchial epithelial cells, WNT7a was lost concomitantly with HOXA1, and a statistically significant correlation between the expression of both genes was observed in lung cancer cell lines. Furthermore, we identified a homozygous deletion of beta-catenin in the mesothelioma, NCI-H28, associated with reduced WNT7a and the lowest overall cell line expression of HOXA1, HOXA7, HOXA9, and HOXA10, whereas HOXB9 levels were unaffected. Of note, both WNT7a and beta-catenin are encoded on chromosome 3p, which undergoes frequent loss of heterozygosity in these tumors. Our results suggest that alterations in regulatory circuits involving HOX, WNT, and possibly fibroblast growth factor pathways occur frequently in lung cancer.
Leukemia | 2002
Harry A. Drabkin; Parsy C; Ferguson K; François Guilhot; Laurence Lacotte; Roy L; Chan Zeng; Anna E. Barón; Stephen P. Hunger; Marileila Varella-Garcia; Robert M. Gemmill; Françoise Brizard; André Brizard; Joëlle Roche
We used a degenerate RT-PCR screen and subsequent real-time quantitative RT-PCR assays to examine the expression of HOX and TALE-family genes in 34 cases of chromosomally defined AML for which outcome data were available. AMLs with favorable cytogenetic features were associated with low overall HOX gene expression whereas poor prognostic cases had high levels. Characteristically, multiple HOXA family members including HOXA3–HOXA10 were jointly overexpressed in conjunction with HOXB3, HOXB6, MEIS1 and PBX3. Higher levels of expression were also observed in the FAB subtype, AML-M1. Spearmann correlation coefficients indicated that the expression levels for many of these genes were highly inter-related. While we did not detect any significant correlations between HOX expression and complete response rates or age in this limited set of patients, there was a significant correlation between event-free survival and HOXA7 with a trend toward significance for HoxA9, HoxA4 and HoxA5. While patients with elevated HOX expression did worse, there were notable exceptions. Thus, although HOX overexpression and clinical resistance to chemotherapy often coincide, they are not inextricably linked. Our results indicate that quantitative HOX analysis has the potential to add new information to the management of patients with AML, especially where characteristic chromosomal alterations are lacking.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Tatsuo Ohira; Robert M. Gemmill; Kevin Ferguson; Sophie Kusy; Joëlle Roche; Elisabeth Brambilla; Chan Zeng; Anna E. Barón; Lynne T. Bemis; Paul F. Erickson; Elizabeth L. Wilder; Anil K. Rustgi; Jan Kitajewski; Edward Gabrielson; Roy M. Bremnes; Wilbur A. Franklin; Harry A. Drabkin
E-cadherin loss in cancer is associated with de-differentiation, invasion, and metastasis. Drosophila DE-cadherin is regulated by Wnt/β-catenin signaling, although this has not been demonstrated in mammalian cells. We previously reported that expression of WNT7a, encoded on 3p25, was frequently downregulated in lung cancer, and that loss of E-cadherin or β-catenin was a poor prognostic feature. Here we show that WNT7a both activates E-cadherin expression via a β-catenin specific mechanism in lung cancer cells and is involved in a positive feedback loop. Li+, a GSK3β inhibitor, led to E-cadherin induction in an inositol-independent manner. Similarly, exposure to mWNT7a specifically induced free β-catenin and E-cadherin. Among known transcriptional suppressors of E-cadherin, ZEB1 was uniquely correlated with E-cadherin loss in lung cancer cell lines, and its inhibition by RNA interference resulted in E-cadherin induction. Pharmacologic reversal of E-cadherin and WNT7a losses was achieved with Li+, histone deacetylase inhibition, or in some cases only with combined inhibitors. Our findings provide support that E-cadherin induction by WNT/β-catenin signaling is an evolutionarily conserved pathway operative in lung cancer cells, and that loss of WNT7a expression may be important in lung cancer development or progression by its effects on E-cadherin.
The Journal of Pathology | 2003
Sylvie Lantuejoul; Bruno Constantin; Harry A. Drabkin; Christian Brambilla; Joëlle Roche; Elisabeth Brambilla
Two receptors, neuropilin 1 (NP1) and neuropilin 2 (NP2), bind class 3 semaphorins, axon guidance molecules including SEMA3F, the gene for which was isolated from a 3p21.3 deletion in lung cancer. In addition, they bind VEGF (vascular endothelial growth factor), enhancing the effects of VEGF binding to KDR/Flk‐1. Elevated VEGF levels are associated with the loss and cytoplasmic delocalization of SEMA3F in lung cancer, suggesting competition for their NP1 and NP2 receptors. To determine the timing of these events, we compared by immunohistochemistry VEGF, SEMA3F, NP1 and NP2 expression in 50 preneoplastic lesions and 112 lung tumours. In preneoplastic lesions, VEGF increased from low‐grade to high‐grade dysplasia (p = 0.001) whereas SEMA3F levels remained low. NP1 and NP2 levels increased from dysplasia to microinvasive carcinoma (p = 0.0001) and correlated with VEGF expression (p = 0.04 and 0.0002, respectively). Non‐small cell lung carcinoma overexpressed VEGF and NP1 and NP2 significantly more often than neuroendocrine tumours including small cell lung carcinoma. SEMA3F loss or delocalization correlated with advanced tumour stage. Migrating cells overexpressed VEGF, SEMA3F, NP1 and NP2 with cytoplasmic delocalization of NP1 as demonstrated in an in vitro wound assay. These results demonstrate early alteration of the VEGF/SEMA3F/NP pathway in lung cancer progression. Copyright
American Journal of Pathology | 2000
Elisabeth Brambilla; Bruno Constantin; Harry A. Drabkin; Joëlle Roche
Semaphorins/collapsins are a family of secreted and membrane-associated proteins involved in nerve growth cone migration. However, some are expressed widely in adult tissues suggesting additional functions. SEMA3F/H.SemaIV was previously isolated from a 3p21.3 homozygous deletion region in human lung cancer. We studied SEMA3F cellular localization using our previously characterized anti-SEMA3F antibody. In normal lung, SEMA3F was found in all epithelial cells at the cytoplasmic membrane and, to a lesser extent, in the cytoplasm. In lung tumors, the localization was predominantly cytoplasmic, and the levels were comparatively reduced. In non-small-cell lung carcinomas, low levels correlated with higher stage. In all tumors, an exclusive cytoplasmic localization of SEMA3F correlated with high levels of vascular endothelial growth factor and was related to the grade and aggressiveness. This suggests that vascular endothelial growth factor might compete with SEMA3F for binding to their common receptors, neuropilin-1 and -2 and might contribute to SEMA3F delocalization and deregulation in lung tumor. In parallel studies, SEMA3F distribution was examined in cell cultures by confocal microscopy. Marked staining was observed in pseudopods and in the leading edge or ruffling membranes of lamellipods or cellular protrusions in motile cells. SEMA3F was also observed at the interface of adjacent interacting cells suggesting a role in cell motility and cell adhesion.
Cancer Letters | 2011
Robert M. Gemmill; Joëlle Roche; Vincent Potiron; Patrick Nasarre; Michael Mitas; Christopher D. Coldren; Barbara Helfrich; Elizabeth Garrett-Mayer; Paul A. Bunn; Harry A. Drabkin
The epithelial to mesenchymal transition (EMT) is a developmental process enabling epithelial cells to gain a migratory mesenchymal phenotype. In cancer, this process contributes to metastases; however the regulatory signals and mechanistic details are not fully elucidated. Here, we sought to identify the subset of genes regulated in lung cancer by ZEB1, an E-box transcriptional repressor known to induce EMT. Using an Affymetrix-based expression database of 38 non-small cell lung cancer (NSCLC) cell lines, we identified 324 genes that correlated negatively with ZEB1 and 142 that were positively correlated. A mesenchymal gene pattern (low E-cadherin, high Vimentin or N-cadherin) was significantly associated with ZEB1 and ZEB2, but not with Snail, Slug, Twist1 or Twist2. Among eight genes selected for validation, seven were confirmed to correlate with ZEB1 by quantitative real-time RT-PCR in a series of 22 NSCLC cell lines, either negatively (CDS1, EpCAM, ESRP1, ESRP2, ST14) or positively (FGFR1, Vimentin). In addition, over-expression or knockdown of ZEB1 led to corresponding changes in gene expression, demonstrating that these genes are also regulated by ZEB1, either directly or indirectly. Of note, the combined knockdown of ZEB1 and ZEB2 led to apparent synergistic responses in gene expression. Furthermore, these responses were not restricted to artificial settings, since most genes were similarly regulated during a physiologic induction of EMT by TGF-β plus EGF. Finally, the absence of ST14 (matriptase) was linked to ZEB1 positivity in lung cancer tissue microarrays, implying that the regulation observed in vitro applies to the human disease. In summary, this study identifies a new set of ZEB-regulated genes in human lung cancer cells and supports the hypothesis that ZEB1 and ZEB2 are key regulators of the EMT process in this disease.
Neoplasia | 2003
Patrick Nasarre; Bruno Constantin; Lydie Rouhaud; Thomas Harnois; Guy Raymond; Harry A. Drabkin; Nicolas Bourmeyster; Joëlle Roche
SEMA3F, isolated from a 3p21.3 deletion, has antitumor activity in transfected cells, and protein expression correlates with tumor stage and histology. In primary tumors, SEMA3F and VEGF surface staining is inversely correlated. Coupled with SEMA3F at the leading edge of motile cells, we previously suggested that both proteins competitively regulate cell motility and adhesion. We have investigated this using the breast cancer cell line, MCF7. SEMA3F inhibited cell attachment and spreading as evidenced by loss of lamellipodia extensions, membrane ruffling, and cell-cell contacts, with cells eventually rounding-up and detaching. In contrast, VEGF had opposite effects. Although SEMA3F binds NRP2 with 10-fold greater affinity than NRP1, the effects in MCF7 were mediated by NRP1. This was determined by receptor expression and blocking of anti-NRP1 antibodies. Similar effects, but through NRP2, were observed in the C100 breast cancer cell line. Although we were unable to demonstrate changes in total GTP-bound Rac1 or RhoA, we did observe changes in the localization of Rac1-GFP using time lapse microscopy. Following SEMA3F, Rac1 moved to the base of lamellipodia and - with their collapse - to the membrane. These results support the concept that SEMA3F and VEGF have antagonistic actions affecting motility in primary tumor cell.
Genes, Chromosomes and Cancer | 1996
Anke van den Berg; Miriam Hulsbeek; Debora de Jong; Klaas Kok; Patrick M.J.F. Veldhuis; Joëlle Roche; Charles H.C.M. Buys
In a loss of heterozygosity analysis of 3p, we examined 44 sporadic cases of renal cell carcinoma (RCC) and matched normal tissue with 18 markers distributed over the whole p‐arm. The majority of these markers clustered in three regions that have been suggested to be involved in the development of RCC, namely the p25 region, where the Von Hippel Lindau (VHL) gene is located; the p21 region, which has been identified as a common region of overlap (SRO) of heterozygous deletions; and the p14 region, which is the location of the constitutional t(3;8) breakpoint occurring in an RCC family. Thirty‐one out of these 44 tumors were analyzed with 9 additional markers from the 3p12‐14 region to further delimit the SRO in this region. Our analysis shows that when deletions were detected the 3p21 region was always included. The 3p21 markers D3F1552 and UBEIL were always contained within these 3p21 deletions. The t(3;8) breakpoint region showed the lowest percentage of loss of heterozygosity. Moreover, in three cases the t(3;8) breakpoint region retained heterozygosity, whereas a region more proximal to the breakpoint showed allelic losses. This supports exclusion of the t(3;8) region from a role in the development of sporadic RCC. In a number of tumors, two or three 3p regions with allelic losses were present separated by a region of retention of heterozygosity. In these tumors deletions at 3p21 occurred in combination with deletions of either the VHL region, or the region proximal to the t(3;8), or both, suggestive of multiple gene involvement in the development of sporadic RCC with a primary role of the 3p21 region. Genes Chromosom Cancer 14:00–00 (1995).
Cancer Research | 2007
Vincent A. Potiron; Girish Sharma; Patrick Nasarre; Jonathan Clarhaut; Hellmut G. Augustin; Robert M. Gemmill; Joëlle Roche; Harry A. Drabkin
Loss of SEMA3F occurs frequently in lung cancer and correlates with advanced stage of disease. We previously reported that SEMA3F blocked tumor formation by H157 lung cancer cells in a rat orthotopic model. This was associated with loss of activated alpha(V)beta(3) integrin, impaired cell adhesion to extracellular matrix components, and down-regulation of phospho-extracellular signal-regulated kinase 1/2 (ERK1/2). These results suggested that SEMA3F might interfere with integrin outside-in signaling. In the present report, we found that SEMA3F decreased adhesion to vitronectin, whereas integrin-linked kinase (ILK) kinase activity was down-regulated in SEMA3F-expressing H157 cells. Exposure to SEMA3F-conditioned medium led to diminution of phospho-ERK1/2 in four of eight lung cancer cell lines, and ILK silencing by small interfering RNA led to similar loss of phospho-ERK1/2 in H157 cells. Moreover, SEMA3F expression (with constitutive and inducible systems) also reduced AKT and signal transducer and activator of transcription 3 (STAT3) phosphorylation independently of ILK-ERK1/2. These signaling changes extended downstream to hypoxia-inducible factor-1alpha (HIF-1alpha) protein and vascular endothelial growth factor (VEGF) mRNA levels, which were both reduced in three of four SEMA3F-transfected cell lines. Mechanistically, the effects on HIF-1alpha were consistent with inhibition of its AKT-driven protein translation initiation, with no effect on HIF-1alpha mRNA level or protein degradation. Furthermore, when H157 cells were injected s.c. in nude mice, tumors derived from SEMA3F-expressing cells showed lower microvessel density and tumor growth. These results show that SEMA3F negatively affects ILK-ERK1/2 and AKT-STAT3 signaling, along with inhibition of HIF-1alpha and VEGF. These changes would be anticipated to contribute significantly to the observed antitumor activity of SEMA3F.